Normalized defining polynomial
\( x^{28} - 29 x^{26} + 319 x^{24} - 928 x^{22} - 2494 x^{20} - 21982 x^{18} + 156890 x^{16} - 105676 x^{14} - 41383 x^{12} - 3321805 x^{10} + 13163303 x^{8} - 22596220 x^{6} + 20965492 x^{4} - 8196560 x^{2} - 1114064 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-3356956934459190134013901917828042334392800598032384\)\(\medspace = -\,2^{40}\cdot 29^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $69.22$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{4} a^{6} + \frac{5}{12} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{4} a^{7} + \frac{5}{12} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{24} a^{14} - \frac{1}{12} a^{11} - \frac{1}{24} a^{10} - \frac{1}{12} a^{9} + \frac{1}{24} a^{8} - \frac{5}{12} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{168} a^{15} + \frac{1}{84} a^{13} - \frac{1}{56} a^{11} - \frac{11}{168} a^{9} - \frac{2}{21} a^{7} - \frac{5}{24} a^{5} - \frac{13}{28} a^{3} + \frac{5}{42} a$, $\frac{1}{504} a^{16} + \frac{1}{56} a^{14} - \frac{1}{168} a^{12} - \frac{1}{12} a^{11} - \frac{1}{28} a^{10} - \frac{1}{12} a^{9} + \frac{19}{504} a^{8} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{37}{168} a^{4} + \frac{1}{12} a^{3} - \frac{9}{28} a^{2} - \frac{1}{6} a + \frac{7}{18}$, $\frac{1}{1008} a^{17} - \frac{1}{1008} a^{16} + \frac{1}{84} a^{14} - \frac{1}{48} a^{13} - \frac{13}{336} a^{12} + \frac{1}{112} a^{11} + \frac{13}{336} a^{10} - \frac{25}{504} a^{9} - \frac{41}{504} a^{8} + \frac{23}{112} a^{7} + \frac{17}{48} a^{6} + \frac{71}{168} a^{5} - \frac{43}{168} a^{4} - \frac{13}{28} a^{3} - \frac{25}{84} a^{2} + \frac{23}{126} a - \frac{4}{9}$, $\frac{1}{1008} a^{18} - \frac{1}{1008} a^{16} - \frac{1}{112} a^{14} - \frac{5}{168} a^{12} - \frac{11}{1008} a^{10} - \frac{43}{1008} a^{8} - \frac{1}{2} a^{7} - \frac{25}{112} a^{6} + \frac{47}{168} a^{4} + \frac{97}{252} a^{2} - \frac{1}{2} a + \frac{2}{9}$, $\frac{1}{7056} a^{19} + \frac{1}{7056} a^{17} + \frac{1}{2352} a^{15} + \frac{2}{49} a^{13} + \frac{139}{7056} a^{11} + \frac{565}{7056} a^{9} + \frac{1007}{2352} a^{7} - \frac{25}{56} a^{5} + \frac{85}{252} a^{3} + \frac{94}{441} a$, $\frac{1}{14112} a^{20} + \frac{1}{14112} a^{18} - \frac{11}{14112} a^{16} - \frac{11}{1176} a^{14} + \frac{181}{14112} a^{12} - \frac{1}{12} a^{11} + \frac{1111}{14112} a^{10} - \frac{1}{12} a^{9} - \frac{1067}{14112} a^{8} - \frac{13}{168} a^{6} + \frac{1}{4} a^{5} - \frac{1}{252} a^{4} + \frac{1}{12} a^{3} + \frac{545}{1764} a^{2} - \frac{1}{6} a - \frac{1}{9}$, $\frac{1}{28224} a^{21} - \frac{1}{28224} a^{20} + \frac{1}{28224} a^{19} - \frac{1}{28224} a^{18} - \frac{11}{28224} a^{17} + \frac{11}{28224} a^{16} - \frac{1}{588} a^{15} - \frac{19}{1176} a^{14} - \frac{827}{28224} a^{13} - \frac{181}{28224} a^{12} + \frac{2035}{28224} a^{11} - \frac{523}{28224} a^{10} - \frac{1991}{28224} a^{9} - \frac{1873}{28224} a^{8} + \frac{13}{336} a^{7} + \frac{83}{336} a^{6} - \frac{317}{1008} a^{5} - \frac{61}{1008} a^{4} + \frac{5}{882} a^{3} + \frac{683}{1764} a^{2} + \frac{1}{252} a - \frac{1}{36}$, $\frac{1}{592704} a^{22} - \frac{1}{296352} a^{20} + \frac{17}{42336} a^{18} - \frac{155}{592704} a^{16} - \frac{9335}{592704} a^{14} + \frac{3691}{148176} a^{12} - \frac{1}{12} a^{11} - \frac{3557}{148176} a^{10} - \frac{1}{12} a^{9} - \frac{9707}{592704} a^{8} - \frac{1}{2} a^{7} - \frac{7559}{21168} a^{6} + \frac{1}{4} a^{5} - \frac{14765}{148176} a^{4} + \frac{1}{12} a^{3} - \frac{3938}{9261} a^{2} + \frac{1}{3} a + \frac{37}{108}$, $\frac{1}{1185408} a^{23} - \frac{1}{1185408} a^{22} - \frac{1}{592704} a^{21} + \frac{1}{592704} a^{20} - \frac{1}{84672} a^{19} + \frac{25}{84672} a^{18} - \frac{407}{1185408} a^{17} + \frac{743}{1185408} a^{16} + \frac{493}{1185408} a^{15} + \frac{14627}{1185408} a^{14} + \frac{3187}{296352} a^{13} + \frac{3365}{296352} a^{12} - \frac{247}{9261} a^{11} + \frac{2249}{74088} a^{10} - \frac{70943}{1185408} a^{9} + \frac{6767}{1185408} a^{8} + \frac{311}{756} a^{7} - \frac{5245}{10584} a^{6} - \frac{69449}{296352} a^{5} - \frac{71671}{296352} a^{4} + \frac{1559}{9261} a^{3} - \frac{6383}{37044} a^{2} + \frac{3847}{10584} a + \frac{29}{216}$, $\frac{1}{2709842688} a^{24} + \frac{263}{387120384} a^{22} + \frac{9439}{338730336} a^{20} + \frac{1190699}{2709842688} a^{18} + \frac{16193}{677460672} a^{16} + \frac{3709877}{387120384} a^{14} - \frac{1495537}{169365168} a^{12} - \frac{119871835}{2709842688} a^{10} - \frac{34864273}{2709842688} a^{8} + \frac{132964487}{677460672} a^{6} - \frac{54108283}{677460672} a^{4} + \frac{32894249}{169365168} a^{2} + \frac{144913}{493776}$, $\frac{1}{5419685376} a^{25} - \frac{1}{5419685376} a^{24} + \frac{263}{774240768} a^{23} - \frac{263}{774240768} a^{22} + \frac{9439}{677460672} a^{21} - \frac{9439}{677460672} a^{20} - \frac{345493}{5419685376} a^{19} - \frac{1190699}{5419685376} a^{18} - \frac{367855}{1354921344} a^{17} - \frac{16193}{1354921344} a^{16} - \frac{1557067}{774240768} a^{15} - \frac{3709877}{774240768} a^{14} - \frac{4951969}{338730336} a^{13} + \frac{1495537}{338730336} a^{12} + \frac{215018021}{5419685376} a^{11} - \frac{331768613}{5419685376} a^{10} - \frac{96311953}{5419685376} a^{9} + \frac{34864273}{5419685376} a^{8} - \frac{559474057}{1354921344} a^{7} + \frac{544496185}{1354921344} a^{6} - \frac{29913259}{1354921344} a^{5} + \frac{392838619}{1354921344} a^{4} + \frac{102790985}{338730336} a^{3} + \frac{80015863}{338730336} a^{2} - \frac{11223839}{48390048} a - \frac{144913}{987552}$, $\frac{1}{2284351445439844188097536} a^{26} - \frac{5124095733929}{47590655113330087252032} a^{24} + \frac{1363382683578602263}{2284351445439844188097536} a^{22} - \frac{64842891516076821773}{2284351445439844188097536} a^{20} + \frac{850268112250719935161}{2284351445439844188097536} a^{18} - \frac{8779020968014583971}{207668313221804017099776} a^{16} + \frac{1913104556387043516923}{99319628062601921221632} a^{14} + \frac{6634133868292048118083}{326335920777120598299648} a^{12} - \frac{1}{12} a^{11} - \frac{75458226950711250595099}{1142175722719922094048768} a^{10} - \frac{1}{12} a^{9} - \frac{73264997973685096090595}{2284351445439844188097536} a^{8} - \frac{1}{2} a^{7} + \frac{98499428667056812542263}{285543930679980523512192} a^{6} + \frac{1}{4} a^{5} + \frac{216312965896651049804671}{571087861359961047024384} a^{4} + \frac{1}{12} a^{3} - \frac{1112504923048812373855}{23795327556665043626016} a^{2} + \frac{1}{3} a - \frac{565101812347605383}{59463542415656085696}$, $\frac{1}{2284351445439844188097536} a^{27} + \frac{29255821360699}{380725240906640698016256} a^{25} - \frac{1}{5419685376} a^{24} + \frac{212289333192903697}{2284351445439844188097536} a^{23} + \frac{2731}{5419685376} a^{22} - \frac{29161105111737130157}{2284351445439844188097536} a^{21} - \frac{5291}{338730336} a^{20} + \frac{84132664484690857039}{2284351445439844188097536} a^{19} + \frac{2585773}{5419685376} a^{18} - \frac{52721734691563140979}{207668313221804017099776} a^{17} + \frac{239363}{677460672} a^{16} - \frac{185962392169269475411}{99319628062601921221632} a^{15} - \frac{44453735}{5419685376} a^{14} - \frac{12745950036388619525117}{326335920777120598299648} a^{13} + \frac{6889679}{169365168} a^{12} + \frac{8253079932589187685145}{571087861359961047024384} a^{11} - \frac{297350597}{5419685376} a^{10} - \frac{84631962196405284443789}{2284351445439844188097536} a^{9} - \frac{22957811}{5419685376} a^{8} + \frac{28565790733108454842459}{142771965339990261756096} a^{7} - \frac{610784207}{1354921344} a^{6} + \frac{157372495364721533090641}{571087861359961047024384} a^{5} - \frac{69852353}{1354921344} a^{4} + \frac{112274626017172175101}{1982943963055420302168} a^{3} - \frac{122386577}{338730336} a^{2} - \frac{160356432824379480401}{2913713578367148199104} a + \frac{326003}{987552}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 764940809278458.8 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{29}) \), 4.2.390224.1, 7.1.38068692544.1, 14.2.42027535208278434566144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}$ | $28$ | $28$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
29 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.29.2t1.a.a | $1$ | $ 29 $ | \(\Q(\sqrt{29}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.116.2t1.a.a | $1$ | $ 2^{2} \cdot 29 $ | \(\Q(\sqrt{-29}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.13456.4t3.c.a | $2$ | $ 2^{4} \cdot 29^{2}$ | 4.2.390224.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.3364.7t2.a.c | $2$ | $ 2^{2} \cdot 29^{2}$ | 7.1.38068692544.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.3364.14t3.a.c | $2$ | $ 2^{2} \cdot 29^{2}$ | 14.2.42027535208278434566144.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.3364.14t3.a.b | $2$ | $ 2^{2} \cdot 29^{2}$ | 14.2.42027535208278434566144.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.3364.7t2.a.b | $2$ | $ 2^{2} \cdot 29^{2}$ | 7.1.38068692544.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.3364.7t2.a.a | $2$ | $ 2^{2} \cdot 29^{2}$ | 7.1.38068692544.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.3364.14t3.a.a | $2$ | $ 2^{2} \cdot 29^{2}$ | 14.2.42027535208278434566144.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.13456.28t10.a.b | $2$ | $ 2^{4} \cdot 29^{2}$ | 28.2.3356956934459190134013901917828042334392800598032384.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.13456.28t10.a.e | $2$ | $ 2^{4} \cdot 29^{2}$ | 28.2.3356956934459190134013901917828042334392800598032384.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.13456.28t10.a.a | $2$ | $ 2^{4} \cdot 29^{2}$ | 28.2.3356956934459190134013901917828042334392800598032384.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.13456.28t10.a.f | $2$ | $ 2^{4} \cdot 29^{2}$ | 28.2.3356956934459190134013901917828042334392800598032384.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.13456.28t10.a.c | $2$ | $ 2^{4} \cdot 29^{2}$ | 28.2.3356956934459190134013901917828042334392800598032384.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.13456.28t10.a.d | $2$ | $ 2^{4} \cdot 29^{2}$ | 28.2.3356956934459190134013901917828042334392800598032384.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |