Normalized defining polynomial
\( x^{28} - 24 x^{24} - 160 x^{22} - 1656 x^{20} + 35040 x^{18} - 27616 x^{16} - 906528 x^{14} + 2661648 x^{12} + 11464832 x^{10} - 75391104 x^{8} + 141558144 x^{6} - 105026816 x^{4} + 23099904 x^{2} - 1565568 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-3206343011700717904956462085952501156673661196828672\)\(\medspace = -\,2^{77}\cdot 151^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $69.10$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 151$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{24} a^{12} - \frac{1}{6} a^{4}$, $\frac{1}{24} a^{13} - \frac{1}{6} a^{5}$, $\frac{1}{72} a^{14} - \frac{1}{72} a^{12} - \frac{1}{36} a^{8} - \frac{1}{6} a^{6} + \frac{1}{9} a^{4} + \frac{2}{9} a^{2}$, $\frac{1}{72} a^{15} - \frac{1}{72} a^{13} - \frac{1}{36} a^{9} - \frac{2}{9} a^{5} - \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{144} a^{16} + \frac{1}{72} a^{12} + \frac{1}{36} a^{10} + \frac{1}{36} a^{8} + \frac{2}{9} a^{6} - \frac{1}{6} a^{4} + \frac{4}{9} a^{2}$, $\frac{1}{144} a^{17} + \frac{1}{72} a^{13} + \frac{1}{36} a^{11} + \frac{1}{36} a^{9} + \frac{1}{18} a^{7} + \frac{1}{6} a^{5} - \frac{2}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{144} a^{18} + \frac{1}{36} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{144} a^{19} + \frac{1}{36} a^{11} - \frac{2}{9} a^{3}$, $\frac{1}{288} a^{20} + \frac{1}{72} a^{12} - \frac{1}{9} a^{4}$, $\frac{1}{864} a^{21} + \frac{1}{216} a^{15} - \frac{1}{72} a^{13} - \frac{1}{36} a^{11} + \frac{1}{54} a^{9} + \frac{1}{18} a^{7} + \frac{1}{6} a^{5} - \frac{1}{27} a^{3} - \frac{1}{3} a$, $\frac{1}{78624} a^{22} - \frac{5}{3744} a^{20} + \frac{3}{1456} a^{18} - \frac{103}{39312} a^{16} - \frac{5}{936} a^{14} - \frac{131}{6552} a^{12} + \frac{17}{756} a^{10} + \frac{67}{3276} a^{8} - \frac{17}{234} a^{6} + \frac{1021}{4914} a^{4} + \frac{44}{819} a^{2} + \frac{9}{91}$, $\frac{1}{78624} a^{23} - \frac{1}{5616} a^{21} + \frac{3}{1456} a^{19} - \frac{103}{39312} a^{17} - \frac{1}{1404} a^{15} + \frac{17}{2184} a^{13} - \frac{1}{189} a^{11} + \frac{383}{9828} a^{9} - \frac{2}{117} a^{7} + \frac{1021}{4914} a^{5} + \frac{41}{2457} a^{3} - \frac{64}{273} a$, $\frac{1}{1415232} a^{24} - \frac{1}{176904} a^{22} - \frac{5}{4536} a^{20} - \frac{1037}{353808} a^{18} - \frac{323}{353808} a^{16} - \frac{1}{273} a^{14} + \frac{1499}{176904} a^{12} + \frac{445}{88452} a^{10} + \frac{223}{14742} a^{8} + \frac{6401}{44226} a^{6} + \frac{1279}{22113} a^{4} - \frac{269}{819} a^{2} + \frac{100}{273}$, $\frac{1}{1415232} a^{25} - \frac{1}{176904} a^{23} + \frac{1}{18144} a^{21} - \frac{1037}{353808} a^{19} - \frac{323}{353808} a^{17} + \frac{19}{19656} a^{15} - \frac{479}{88452} a^{13} - \frac{503}{22113} a^{11} + \frac{248}{7371} a^{9} + \frac{1487}{44226} a^{7} + \frac{1279}{22113} a^{5} - \frac{79}{2457} a^{3} + \frac{100}{273} a$, $\frac{1}{101081515688727484577604090607935936} a^{26} - \frac{9937481208340290893208335125}{101081515688727484577604090607935936} a^{24} - \frac{82966062596966047332367048817}{25270378922181871144401022651983984} a^{22} - \frac{2703041600651213493328674421115}{3610054131740267306343003235997712} a^{20} + \frac{2892143457537796605422602121555}{3610054131740267306343003235997712} a^{18} - \frac{68418116557086139107127404848705}{25270378922181871144401022651983984} a^{16} + \frac{79510949957139134754136137127169}{12635189461090935572200511325991992} a^{14} + \frac{238883814099308563993639536724987}{12635189461090935572200511325991992} a^{12} - \frac{7943766112218449192069163952793}{6317594730545467786100255662995996} a^{10} - \frac{17586658429596916673624468797945}{3158797365272733893050127831497998} a^{8} + \frac{30467189702287412084156137616029}{242984412713287222542317525499846} a^{6} - \frac{268527667271240114703609135179071}{3158797365272733893050127831497998} a^{4} - \frac{137695289971381110203566924220}{6499583056116736405452937924893} a^{2} - \frac{676273727539078448743788132626}{1499903782180785324335293367283}$, $\frac{1}{101081515688727484577604090607935936} a^{27} - \frac{9937481208340290893208335125}{101081515688727484577604090607935936} a^{25} - \frac{82966062596966047332367048817}{25270378922181871144401022651983984} a^{23} + \frac{2950523585133376963210714204061}{7220108263480534612686006471995424} a^{21} + \frac{2892143457537796605422602121555}{3610054131740267306343003235997712} a^{19} - \frac{68418116557086139107127404848705}{25270378922181871144401022651983984} a^{17} - \frac{37481545052962120544016745520905}{12635189461090935572200511325991992} a^{15} + \frac{238883814099308563993639536724987}{12635189461090935572200511325991992} a^{13} - \frac{45858127156842583034824621981226}{1579398682636366946525063915748999} a^{11} + \frac{257307920666059304898133269024295}{6317594730545467786100255662995996} a^{9} + \frac{3468921623033276246120857004935}{242984412713287222542317525499846} a^{7} + \frac{433427302789367417085308160709373}{3158797365272733893050127831497998} a^{5} + \frac{7530848976450756720498445579987}{19498749168350209216358813774679} a^{3} - \frac{176305800145483340632023676865}{1499903782180785324335293367283} a$
Class group and class number
not computed
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.2.309248.4, 7.1.3442951.1, 14.2.24859454395438333952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}$ | $28$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |