Properties

Label 28.2.295...963.1
Degree $28$
Signature $[2, 13]$
Discriminant $-2.958\times 10^{50}$
Root discriminant \(63.47\)
Ramified primes $7,29$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $D_{28}$ (as 28T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563)
 
gp: K = bnfinit(y^28 - 14*y^27 + 80*y^26 - 221*y^25 + 397*y^24 - 1904*y^23 + 10213*y^22 - 26576*y^21 + 32909*y^20 - 65079*y^19 + 350623*y^18 - 1046531*y^17 + 1678487*y^16 - 1771438*y^15 + 2670493*y^14 - 7195176*y^13 + 14367013*y^12 - 15585945*y^11 + 7205726*y^10 - 3208396*y^9 + 37523327*y^8 - 120026000*y^7 + 201372903*y^6 - 215912334*y^5 + 156455683*y^4 - 76691304*y^3 + 25200801*y^2 - 5337738*y + 544563, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563)
 

\( x^{28} - 14 x^{27} + 80 x^{26} - 221 x^{25} + 397 x^{24} - 1904 x^{23} + 10213 x^{22} - 26576 x^{21} + \cdots + 544563 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-295815184798509371659078776791937755272938949172963\) \(\medspace = -\,7^{13}\cdot 29^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(63.47\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{1/2}29^{27/28}\approx 68.03282703181608$
Ramified primes:   \(7\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-203}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{21}a^{10}+\frac{2}{21}a^{9}+\frac{2}{21}a^{8}+\frac{1}{21}a^{7}+\frac{5}{21}a^{6}-\frac{8}{21}a^{5}+\frac{8}{21}a^{4}-\frac{2}{21}a^{3}+\frac{4}{21}a^{2}+\frac{8}{21}a-\frac{1}{7}$, $\frac{1}{21}a^{11}-\frac{2}{21}a^{9}-\frac{1}{7}a^{8}+\frac{1}{7}a^{7}+\frac{1}{7}a^{6}+\frac{1}{7}a^{5}+\frac{1}{7}a^{4}+\frac{8}{21}a^{3}+\frac{2}{21}a+\frac{2}{7}$, $\frac{1}{21}a^{12}+\frac{1}{21}a^{9}-\frac{3}{7}a^{7}+\frac{2}{7}a^{6}-\frac{2}{7}a^{5}-\frac{4}{21}a^{4}+\frac{1}{7}a^{3}+\frac{1}{7}a^{2}+\frac{8}{21}a-\frac{2}{7}$, $\frac{1}{21}a^{13}-\frac{2}{21}a^{9}+\frac{1}{7}a^{8}-\frac{3}{7}a^{7}+\frac{1}{7}a^{6}-\frac{10}{21}a^{5}+\frac{3}{7}a^{4}-\frac{3}{7}a^{3}-\frac{1}{7}a^{2}-\frac{1}{3}a+\frac{1}{7}$, $\frac{1}{63}a^{14}-\frac{1}{63}a^{13}-\frac{1}{63}a^{12}+\frac{1}{63}a^{11}+\frac{2}{21}a^{9}+\frac{10}{63}a^{8}+\frac{26}{63}a^{7}-\frac{3}{7}a^{6}-\frac{1}{7}a^{5}-\frac{16}{63}a^{4}+\frac{1}{9}a^{3}+\frac{1}{63}a^{2}+\frac{20}{63}a-\frac{2}{7}$, $\frac{1}{63}a^{15}+\frac{1}{63}a^{13}+\frac{1}{63}a^{11}-\frac{2}{63}a^{9}-\frac{1}{7}a^{8}+\frac{8}{63}a^{7}+\frac{3}{7}a^{6}-\frac{4}{9}a^{5}-\frac{1}{7}a^{4}-\frac{4}{9}a^{3}+\frac{1}{7}a^{2}-\frac{25}{63}a+\frac{1}{7}$, $\frac{1}{2205}a^{16}-\frac{8}{2205}a^{15}-\frac{4}{2205}a^{14}-\frac{2}{105}a^{13}+\frac{8}{735}a^{12}+\frac{38}{2205}a^{11}-\frac{38}{2205}a^{10}-\frac{206}{2205}a^{9}-\frac{97}{735}a^{8}-\frac{827}{2205}a^{7}+\frac{76}{441}a^{6}-\frac{928}{2205}a^{5}+\frac{94}{315}a^{4}+\frac{62}{245}a^{3}-\frac{6}{245}a^{2}-\frac{206}{2205}a-\frac{103}{245}$, $\frac{1}{2205}a^{17}+\frac{2}{2205}a^{15}-\frac{4}{2205}a^{14}+\frac{1}{735}a^{13}-\frac{10}{441}a^{12}-\frac{2}{315}a^{11}+\frac{1}{147}a^{10}+\frac{2}{35}a^{9}+\frac{34}{441}a^{8}+\frac{1079}{2205}a^{7}+\frac{319}{735}a^{6}+\frac{934}{2205}a^{5}-\frac{338}{2205}a^{4}-\frac{5}{21}a^{3}+\frac{587}{2205}a^{2}+\frac{5}{49}a+\frac{121}{245}$, $\frac{1}{6615}a^{18}+\frac{1}{6615}a^{16}+\frac{4}{6615}a^{15}+\frac{2}{315}a^{14}-\frac{148}{6615}a^{13}+\frac{137}{6615}a^{12}+\frac{4}{2205}a^{11}-\frac{151}{6615}a^{10}-\frac{359}{6615}a^{9}-\frac{139}{1323}a^{8}+\frac{233}{2205}a^{7}-\frac{2491}{6615}a^{6}-\frac{71}{1323}a^{5}-\frac{148}{315}a^{4}-\frac{2666}{6615}a^{3}+\frac{2939}{6615}a^{2}-\frac{1}{21}a-\frac{94}{245}$, $\frac{1}{6615}a^{19}+\frac{1}{6615}a^{17}+\frac{1}{6615}a^{16}-\frac{13}{2205}a^{15}-\frac{31}{6615}a^{14}+\frac{53}{6615}a^{13}+\frac{10}{441}a^{12}+\frac{10}{1323}a^{11}+\frac{2}{189}a^{10}+\frac{22}{135}a^{9}+\frac{349}{2205}a^{8}+\frac{502}{1323}a^{7}+\frac{331}{1323}a^{6}+\frac{137}{2205}a^{5}+\frac{248}{1323}a^{4}-\frac{650}{1323}a^{3}-\frac{331}{2205}a^{2}-\frac{170}{441}a-\frac{37}{245}$, $\frac{1}{19845}a^{20}-\frac{1}{19845}a^{19}-\frac{1}{6615}a^{17}+\frac{4}{19845}a^{16}-\frac{152}{19845}a^{15}-\frac{2}{315}a^{14}-\frac{184}{19845}a^{13}+\frac{16}{6615}a^{12}+\frac{79}{3969}a^{11}+\frac{34}{19845}a^{10}-\frac{436}{3969}a^{9}+\frac{838}{19845}a^{8}+\frac{418}{6615}a^{7}+\frac{2246}{19845}a^{6}+\frac{2402}{19845}a^{5}+\frac{7507}{19845}a^{4}-\frac{2239}{6615}a^{3}+\frac{964}{2835}a^{2}+\frac{94}{2205}a+\frac{12}{49}$, $\frac{1}{19845}a^{21}-\frac{1}{19845}a^{19}+\frac{1}{19845}a^{17}-\frac{1}{19845}a^{16}+\frac{157}{19845}a^{15}-\frac{26}{3969}a^{14}-\frac{13}{19845}a^{13}-\frac{20}{3969}a^{12}-\frac{121}{6615}a^{11}+\frac{62}{2835}a^{10}+\frac{677}{19845}a^{9}+\frac{3148}{19845}a^{8}+\frac{146}{405}a^{7}+\frac{551}{3969}a^{6}+\frac{719}{6615}a^{5}+\frac{5263}{19845}a^{4}-\frac{1777}{3969}a^{3}+\frac{530}{3969}a^{2}+\frac{27}{245}a+\frac{103}{245}$, $\frac{1}{99225}a^{22}-\frac{1}{99225}a^{21}+\frac{1}{99225}a^{20}+\frac{1}{19845}a^{19}-\frac{2}{99225}a^{18}+\frac{16}{99225}a^{17}-\frac{4}{19845}a^{16}-\frac{26}{11025}a^{15}+\frac{184}{33075}a^{14}-\frac{1466}{99225}a^{13}+\frac{1186}{99225}a^{12}+\frac{449}{33075}a^{11}+\frac{2021}{99225}a^{10}-\frac{8}{2025}a^{9}-\frac{458}{11025}a^{8}+\frac{8822}{99225}a^{7}+\frac{3076}{33075}a^{6}+\frac{1493}{3969}a^{5}+\frac{8774}{99225}a^{4}-\frac{257}{11025}a^{3}+\frac{925}{3969}a^{2}-\frac{386}{1575}a+\frac{62}{1225}$, $\frac{1}{99225}a^{23}+\frac{1}{99225}a^{20}-\frac{1}{14175}a^{19}-\frac{1}{99225}a^{18}-\frac{4}{99225}a^{17}+\frac{11}{99225}a^{16}+\frac{94}{14175}a^{15}-\frac{134}{99225}a^{14}-\frac{7}{405}a^{13}-\frac{752}{99225}a^{12}+\frac{1408}{99225}a^{11}+\frac{22}{14175}a^{10}-\frac{6289}{99225}a^{9}-\frac{113}{2205}a^{8}-\frac{4247}{19845}a^{7}-\frac{26162}{99225}a^{6}-\frac{1832}{33075}a^{5}+\frac{1397}{33075}a^{4}-\frac{44918}{99225}a^{3}+\frac{29117}{99225}a^{2}-\frac{4874}{11025}a-\frac{388}{1225}$, $\frac{1}{106269975}a^{24}-\frac{4}{35423325}a^{23}-\frac{166}{106269975}a^{22}+\frac{2332}{106269975}a^{21}-\frac{76}{7084665}a^{20}+\frac{6563}{106269975}a^{19}-\frac{157}{21253995}a^{18}-\frac{1693}{11807775}a^{17}+\frac{9}{145775}a^{16}-\frac{408196}{106269975}a^{15}+\frac{811061}{106269975}a^{14}-\frac{437011}{106269975}a^{13}+\frac{768511}{106269975}a^{12}-\frac{11227}{15181425}a^{11}-\frac{162541}{35423325}a^{10}+\frac{336512}{4250799}a^{9}+\frac{4243084}{35423325}a^{8}-\frac{82466}{562275}a^{7}+\frac{372584}{787185}a^{6}-\frac{2186651}{6251175}a^{5}-\frac{2314211}{11807775}a^{4}+\frac{30960841}{106269975}a^{3}-\frac{44986}{112455}a^{2}+\frac{209887}{1311975}a-\frac{18974}{145775}$, $\frac{1}{743889825}a^{25}-\frac{2}{743889825}a^{24}+\frac{1856}{743889825}a^{23}-\frac{2}{1012095}a^{22}+\frac{13612}{743889825}a^{21}-\frac{208}{15181425}a^{20}+\frac{779}{82654425}a^{19}+\frac{1090}{29755593}a^{18}-\frac{253}{4862025}a^{17}-\frac{94114}{743889825}a^{16}-\frac{262408}{148777965}a^{15}+\frac{1813087}{743889825}a^{14}-\frac{553649}{247963275}a^{13}-\frac{292829}{16530885}a^{12}+\frac{10172264}{743889825}a^{11}-\frac{5196364}{743889825}a^{10}-\frac{122541382}{743889825}a^{9}-\frac{4638496}{49592655}a^{8}+\frac{26971604}{82654425}a^{7}+\frac{274834613}{743889825}a^{6}-\frac{146107546}{743889825}a^{5}-\frac{5682547}{148777965}a^{4}-\frac{47759113}{148777965}a^{3}+\frac{28240189}{82654425}a^{2}-\frac{3264937}{9183825}a+\frac{51302}{204085}$, $\frac{1}{44\!\cdots\!25}a^{26}-\frac{13}{44\!\cdots\!25}a^{25}+\frac{14\!\cdots\!48}{32\!\cdots\!35}a^{24}-\frac{48\!\cdots\!22}{88\!\cdots\!45}a^{23}-\frac{14\!\cdots\!56}{24\!\cdots\!25}a^{22}+\frac{42\!\cdots\!54}{49\!\cdots\!25}a^{21}-\frac{45\!\cdots\!58}{44\!\cdots\!25}a^{20}-\frac{11\!\cdots\!92}{17\!\cdots\!29}a^{19}-\frac{12\!\cdots\!27}{44\!\cdots\!25}a^{18}-\frac{11\!\cdots\!52}{88\!\cdots\!45}a^{17}-\frac{96\!\cdots\!51}{49\!\cdots\!25}a^{16}+\frac{19\!\cdots\!69}{44\!\cdots\!25}a^{15}+\frac{89\!\cdots\!86}{44\!\cdots\!25}a^{14}+\frac{36\!\cdots\!73}{16\!\cdots\!75}a^{13}-\frac{10\!\cdots\!34}{88\!\cdots\!45}a^{12}+\frac{10\!\cdots\!66}{63\!\cdots\!75}a^{11}-\frac{82\!\cdots\!24}{88\!\cdots\!45}a^{10}-\frac{38\!\cdots\!48}{26\!\cdots\!25}a^{9}+\frac{43\!\cdots\!64}{14\!\cdots\!75}a^{8}-\frac{30\!\cdots\!63}{44\!\cdots\!25}a^{7}-\frac{14\!\cdots\!52}{44\!\cdots\!25}a^{6}-\frac{26\!\cdots\!16}{14\!\cdots\!75}a^{5}+\frac{53\!\cdots\!93}{44\!\cdots\!25}a^{4}+\frac{27\!\cdots\!58}{63\!\cdots\!75}a^{3}+\frac{31\!\cdots\!89}{70\!\cdots\!75}a^{2}-\frac{12\!\cdots\!21}{54\!\cdots\!25}a-\frac{19\!\cdots\!26}{60\!\cdots\!25}$, $\frac{1}{12\!\cdots\!25}a^{27}+\frac{2749}{24\!\cdots\!65}a^{26}-\frac{16\!\cdots\!61}{40\!\cdots\!75}a^{25}+\frac{35\!\cdots\!71}{13\!\cdots\!25}a^{24}+\frac{13\!\cdots\!98}{12\!\cdots\!25}a^{23}-\frac{19\!\cdots\!77}{12\!\cdots\!25}a^{22}+\frac{57\!\cdots\!46}{40\!\cdots\!75}a^{21}-\frac{27\!\cdots\!51}{13\!\cdots\!65}a^{20}-\frac{18\!\cdots\!04}{45\!\cdots\!75}a^{19}-\frac{78\!\cdots\!42}{13\!\cdots\!25}a^{18}+\frac{70\!\cdots\!57}{40\!\cdots\!75}a^{17}+\frac{82\!\cdots\!19}{13\!\cdots\!75}a^{16}-\frac{31\!\cdots\!04}{40\!\cdots\!75}a^{15}+\frac{73\!\cdots\!39}{12\!\cdots\!25}a^{14}+\frac{10\!\cdots\!39}{12\!\cdots\!25}a^{13}+\frac{16\!\cdots\!32}{26\!\cdots\!75}a^{12}-\frac{25\!\cdots\!09}{40\!\cdots\!75}a^{11}-\frac{49\!\cdots\!51}{17\!\cdots\!75}a^{10}+\frac{96\!\cdots\!69}{78\!\cdots\!15}a^{9}+\frac{17\!\cdots\!63}{12\!\cdots\!25}a^{8}+\frac{65\!\cdots\!69}{17\!\cdots\!75}a^{7}-\frac{55\!\cdots\!11}{40\!\cdots\!75}a^{6}+\frac{29\!\cdots\!73}{71\!\cdots\!25}a^{5}+\frac{43\!\cdots\!43}{24\!\cdots\!65}a^{4}-\frac{21\!\cdots\!96}{17\!\cdots\!75}a^{3}+\frac{19\!\cdots\!63}{45\!\cdots\!75}a^{2}+\frac{84\!\cdots\!65}{20\!\cdots\!51}a-\frac{33\!\cdots\!14}{16\!\cdots\!25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$, $5$

Class group and class number

$C_{7}$, which has order $7$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{488611}{510111886095}a^{26}-\frac{6351943}{510111886095}a^{25}+\frac{13080549607}{206595313868475}a^{24}-\frac{9446583178}{68865104622825}a^{23}+\frac{38448811007}{206595313868475}a^{22}-\frac{62539442977}{41319062773695}a^{21}+\frac{557701827568}{68865104622825}a^{20}-\frac{194357120702}{12152665521675}a^{19}+\frac{1704112735522}{206595313868475}a^{18}-\frac{181908514049}{4591006974855}a^{17}+\frac{6619643874548}{22955034874275}a^{16}-\frac{140082159965218}{206595313868475}a^{15}+\frac{1631862790736}{2430533104335}a^{14}-\frac{85419870598606}{206595313868475}a^{13}+\frac{314590230468916}{206595313868475}a^{12}-\frac{29376148141217}{5902723253385}a^{11}+\frac{512019105626036}{68865104622825}a^{10}-\frac{627357685491028}{206595313868475}a^{9}-\frac{202792705471673}{68865104622825}a^{8}-\frac{4623655332811}{1530335658285}a^{7}+\frac{814389001367198}{22955034874275}a^{6}-\frac{15\!\cdots\!19}{206595313868475}a^{5}+\frac{19\!\cdots\!52}{22955034874275}a^{4}-\frac{309066381422812}{5902723253385}a^{3}+\frac{1468490012419}{72873126585}a^{2}-\frac{12501469099423}{2550559430475}a+\frac{1630475588459}{283395492275}$, $\frac{28\!\cdots\!39}{90\!\cdots\!95}a^{27}-\frac{61\!\cdots\!09}{13\!\cdots\!25}a^{26}+\frac{18\!\cdots\!84}{71\!\cdots\!25}a^{25}-\frac{17\!\cdots\!69}{23\!\cdots\!75}a^{24}+\frac{15\!\cdots\!17}{12\!\cdots\!25}a^{23}-\frac{14\!\cdots\!44}{24\!\cdots\!65}a^{22}+\frac{23\!\cdots\!81}{71\!\cdots\!75}a^{21}-\frac{10\!\cdots\!73}{12\!\cdots\!25}a^{20}+\frac{25\!\cdots\!72}{24\!\cdots\!65}a^{19}-\frac{79\!\cdots\!34}{40\!\cdots\!75}a^{18}+\frac{32\!\cdots\!04}{28\!\cdots\!75}a^{17}-\frac{85\!\cdots\!04}{24\!\cdots\!25}a^{16}+\frac{66\!\cdots\!17}{12\!\cdots\!25}a^{15}-\frac{65\!\cdots\!06}{12\!\cdots\!25}a^{14}+\frac{98\!\cdots\!78}{12\!\cdots\!25}a^{13}-\frac{28\!\cdots\!67}{12\!\cdots\!25}a^{12}+\frac{63\!\cdots\!39}{13\!\cdots\!25}a^{11}-\frac{85\!\cdots\!76}{17\!\cdots\!75}a^{10}+\frac{14\!\cdots\!26}{81\!\cdots\!55}a^{9}-\frac{51\!\cdots\!19}{90\!\cdots\!95}a^{8}+\frac{23\!\cdots\!13}{19\!\cdots\!75}a^{7}-\frac{28\!\cdots\!28}{71\!\cdots\!25}a^{6}+\frac{81\!\cdots\!23}{12\!\cdots\!25}a^{5}-\frac{80\!\cdots\!33}{12\!\cdots\!25}a^{4}+\frac{25\!\cdots\!83}{58\!\cdots\!25}a^{3}-\frac{25\!\cdots\!26}{13\!\cdots\!25}a^{2}+\frac{74\!\cdots\!64}{15\!\cdots\!25}a-\frac{11\!\cdots\!66}{16\!\cdots\!25}$, $\frac{28\!\cdots\!39}{90\!\cdots\!95}a^{27}-\frac{29\!\cdots\!94}{71\!\cdots\!75}a^{26}+\frac{24\!\cdots\!37}{12\!\cdots\!25}a^{25}-\frac{52\!\cdots\!81}{12\!\cdots\!25}a^{24}+\frac{41\!\cdots\!31}{67\!\cdots\!25}a^{23}-\frac{12\!\cdots\!41}{26\!\cdots\!75}a^{22}+\frac{31\!\cdots\!26}{12\!\cdots\!25}a^{21}-\frac{36\!\cdots\!03}{71\!\cdots\!25}a^{20}+\frac{33\!\cdots\!44}{12\!\cdots\!25}a^{19}-\frac{16\!\cdots\!57}{12\!\cdots\!25}a^{18}+\frac{13\!\cdots\!29}{15\!\cdots\!25}a^{17}-\frac{37\!\cdots\!88}{17\!\cdots\!75}a^{16}+\frac{17\!\cdots\!73}{81\!\cdots\!55}a^{15}-\frac{38\!\cdots\!87}{27\!\cdots\!85}a^{14}+\frac{57\!\cdots\!79}{12\!\cdots\!25}a^{13}-\frac{18\!\cdots\!26}{12\!\cdots\!25}a^{12}+\frac{28\!\cdots\!89}{12\!\cdots\!25}a^{11}-\frac{18\!\cdots\!44}{17\!\cdots\!75}a^{10}-\frac{11\!\cdots\!23}{12\!\cdots\!25}a^{9}-\frac{22\!\cdots\!97}{40\!\cdots\!75}a^{8}+\frac{72\!\cdots\!63}{64\!\cdots\!25}a^{7}-\frac{29\!\cdots\!81}{12\!\cdots\!25}a^{6}+\frac{67\!\cdots\!19}{24\!\cdots\!65}a^{5}-\frac{20\!\cdots\!02}{12\!\cdots\!25}a^{4}+\frac{63\!\cdots\!62}{17\!\cdots\!75}a^{3}+\frac{10\!\cdots\!67}{54\!\cdots\!77}a^{2}-\frac{17\!\cdots\!96}{15\!\cdots\!25}a+\frac{18\!\cdots\!64}{92\!\cdots\!25}$, $\frac{18\!\cdots\!51}{12\!\cdots\!25}a^{27}-\frac{28\!\cdots\!13}{12\!\cdots\!25}a^{26}+\frac{61\!\cdots\!81}{40\!\cdots\!75}a^{25}-\frac{66\!\cdots\!29}{13\!\cdots\!25}a^{24}+\frac{39\!\cdots\!26}{40\!\cdots\!75}a^{23}-\frac{14\!\cdots\!61}{40\!\cdots\!75}a^{22}+\frac{86\!\cdots\!21}{45\!\cdots\!75}a^{21}-\frac{24\!\cdots\!83}{40\!\cdots\!75}a^{20}+\frac{11\!\cdots\!04}{12\!\cdots\!25}a^{19}-\frac{16\!\cdots\!08}{12\!\cdots\!25}a^{18}+\frac{78\!\cdots\!06}{12\!\cdots\!25}a^{17}-\frac{13\!\cdots\!32}{58\!\cdots\!25}a^{16}+\frac{10\!\cdots\!63}{24\!\cdots\!65}a^{15}-\frac{12\!\cdots\!94}{24\!\cdots\!65}a^{14}+\frac{24\!\cdots\!56}{40\!\cdots\!75}a^{13}-\frac{18\!\cdots\!34}{12\!\cdots\!25}a^{12}+\frac{41\!\cdots\!47}{12\!\cdots\!25}a^{11}-\frac{80\!\cdots\!89}{17\!\cdots\!75}a^{10}+\frac{22\!\cdots\!07}{81\!\cdots\!55}a^{9}-\frac{10\!\cdots\!82}{24\!\cdots\!65}a^{8}+\frac{74\!\cdots\!71}{12\!\cdots\!25}a^{7}-\frac{10\!\cdots\!76}{40\!\cdots\!75}a^{6}+\frac{63\!\cdots\!29}{12\!\cdots\!25}a^{5}-\frac{75\!\cdots\!64}{12\!\cdots\!25}a^{4}+\frac{27\!\cdots\!06}{58\!\cdots\!25}a^{3}-\frac{20\!\cdots\!93}{88\!\cdots\!25}a^{2}+\frac{95\!\cdots\!96}{15\!\cdots\!25}a-\frac{67\!\cdots\!51}{88\!\cdots\!75}$, $\frac{18\!\cdots\!53}{24\!\cdots\!65}a^{27}-\frac{13\!\cdots\!69}{13\!\cdots\!25}a^{26}+\frac{62\!\cdots\!64}{12\!\cdots\!25}a^{25}-\frac{14\!\cdots\!42}{12\!\cdots\!25}a^{24}+\frac{45\!\cdots\!59}{23\!\cdots\!75}a^{23}-\frac{32\!\cdots\!86}{26\!\cdots\!75}a^{22}+\frac{79\!\cdots\!14}{12\!\cdots\!25}a^{21}-\frac{57\!\cdots\!73}{40\!\cdots\!75}a^{20}+\frac{17\!\cdots\!29}{14\!\cdots\!45}a^{19}-\frac{11\!\cdots\!39}{30\!\cdots\!65}a^{18}+\frac{27\!\cdots\!26}{12\!\cdots\!25}a^{17}-\frac{10\!\cdots\!61}{17\!\cdots\!75}a^{16}+\frac{17\!\cdots\!32}{23\!\cdots\!75}a^{15}-\frac{78\!\cdots\!27}{12\!\cdots\!25}a^{14}+\frac{33\!\cdots\!76}{24\!\cdots\!65}a^{13}-\frac{56\!\cdots\!81}{13\!\cdots\!25}a^{12}+\frac{17\!\cdots\!61}{24\!\cdots\!65}a^{11}-\frac{61\!\cdots\!78}{11\!\cdots\!65}a^{10}+\frac{31\!\cdots\!58}{12\!\cdots\!25}a^{9}-\frac{19\!\cdots\!16}{12\!\cdots\!25}a^{8}+\frac{15\!\cdots\!23}{58\!\cdots\!25}a^{7}-\frac{16\!\cdots\!03}{24\!\cdots\!65}a^{6}+\frac{80\!\cdots\!06}{87\!\cdots\!75}a^{5}-\frac{10\!\cdots\!78}{13\!\cdots\!25}a^{4}+\frac{74\!\cdots\!52}{17\!\cdots\!75}a^{3}-\frac{42\!\cdots\!21}{30\!\cdots\!65}a^{2}+\frac{93\!\cdots\!21}{30\!\cdots\!65}a-\frac{38\!\cdots\!29}{16\!\cdots\!25}$, $\frac{48\!\cdots\!42}{12\!\cdots\!25}a^{27}-\frac{24\!\cdots\!98}{40\!\cdots\!75}a^{26}+\frac{17\!\cdots\!07}{45\!\cdots\!75}a^{25}-\frac{79\!\cdots\!09}{64\!\cdots\!75}a^{24}+\frac{58\!\cdots\!61}{24\!\cdots\!65}a^{23}-\frac{61\!\cdots\!23}{71\!\cdots\!75}a^{22}+\frac{59\!\cdots\!78}{12\!\cdots\!25}a^{21}-\frac{73\!\cdots\!25}{48\!\cdots\!93}a^{20}+\frac{27\!\cdots\!43}{12\!\cdots\!25}a^{19}-\frac{38\!\cdots\!36}{12\!\cdots\!25}a^{18}+\frac{22\!\cdots\!77}{14\!\cdots\!45}a^{17}-\frac{99\!\cdots\!13}{17\!\cdots\!75}a^{16}+\frac{43\!\cdots\!44}{40\!\cdots\!75}a^{15}-\frac{27\!\cdots\!61}{24\!\cdots\!65}a^{14}+\frac{80\!\cdots\!93}{64\!\cdots\!75}a^{13}-\frac{43\!\cdots\!81}{12\!\cdots\!25}a^{12}+\frac{69\!\cdots\!56}{81\!\cdots\!55}a^{11}-\frac{18\!\cdots\!19}{17\!\cdots\!75}a^{10}+\frac{77\!\cdots\!02}{16\!\cdots\!31}a^{9}+\frac{15\!\cdots\!39}{12\!\cdots\!25}a^{8}+\frac{88\!\cdots\!31}{58\!\cdots\!25}a^{7}-\frac{27\!\cdots\!84}{40\!\cdots\!75}a^{6}+\frac{57\!\cdots\!16}{45\!\cdots\!75}a^{5}-\frac{16\!\cdots\!04}{12\!\cdots\!25}a^{4}+\frac{51\!\cdots\!52}{58\!\cdots\!25}a^{3}-\frac{84\!\cdots\!37}{26\!\cdots\!75}a^{2}+\frac{16\!\cdots\!42}{33\!\cdots\!85}a-\frac{22\!\cdots\!41}{67\!\cdots\!17}$, $\frac{62\!\cdots\!81}{40\!\cdots\!75}a^{27}+\frac{14\!\cdots\!47}{12\!\cdots\!25}a^{26}-\frac{21\!\cdots\!24}{71\!\cdots\!25}a^{25}+\frac{86\!\cdots\!08}{48\!\cdots\!93}a^{24}-\frac{15\!\cdots\!29}{40\!\cdots\!75}a^{23}+\frac{13\!\cdots\!37}{35\!\cdots\!87}a^{22}-\frac{45\!\cdots\!46}{12\!\cdots\!25}a^{21}+\frac{30\!\cdots\!34}{13\!\cdots\!25}a^{20}-\frac{57\!\cdots\!03}{12\!\cdots\!25}a^{19}+\frac{32\!\cdots\!99}{13\!\cdots\!25}a^{18}-\frac{12\!\cdots\!48}{12\!\cdots\!25}a^{17}+\frac{13\!\cdots\!92}{17\!\cdots\!75}a^{16}-\frac{23\!\cdots\!42}{12\!\cdots\!25}a^{15}+\frac{29\!\cdots\!74}{13\!\cdots\!25}a^{14}-\frac{70\!\cdots\!48}{42\!\cdots\!75}a^{13}+\frac{53\!\cdots\!47}{12\!\cdots\!25}a^{12}-\frac{17\!\cdots\!19}{12\!\cdots\!25}a^{11}+\frac{39\!\cdots\!12}{17\!\cdots\!75}a^{10}-\frac{56\!\cdots\!38}{42\!\cdots\!45}a^{9}-\frac{10\!\cdots\!71}{40\!\cdots\!75}a^{8}-\frac{96\!\cdots\!22}{24\!\cdots\!25}a^{7}+\frac{11\!\cdots\!46}{12\!\cdots\!25}a^{6}-\frac{53\!\cdots\!69}{24\!\cdots\!65}a^{5}+\frac{33\!\cdots\!54}{12\!\cdots\!25}a^{4}-\frac{35\!\cdots\!58}{16\!\cdots\!95}a^{3}+\frac{14\!\cdots\!94}{13\!\cdots\!25}a^{2}-\frac{16\!\cdots\!42}{56\!\cdots\!75}a+\frac{95\!\cdots\!06}{16\!\cdots\!25}$, $\frac{62\!\cdots\!81}{40\!\cdots\!75}a^{27}-\frac{65\!\cdots\!08}{12\!\cdots\!25}a^{26}+\frac{24\!\cdots\!41}{45\!\cdots\!75}a^{25}-\frac{12\!\cdots\!42}{48\!\cdots\!93}a^{24}+\frac{73\!\cdots\!63}{12\!\cdots\!25}a^{23}-\frac{14\!\cdots\!14}{12\!\cdots\!25}a^{22}+\frac{84\!\cdots\!83}{12\!\cdots\!25}a^{21}-\frac{84\!\cdots\!84}{26\!\cdots\!75}a^{20}+\frac{83\!\cdots\!97}{12\!\cdots\!25}a^{19}-\frac{58\!\cdots\!04}{87\!\cdots\!75}a^{18}+\frac{26\!\cdots\!73}{12\!\cdots\!25}a^{17}-\frac{20\!\cdots\!58}{17\!\cdots\!75}a^{16}+\frac{33\!\cdots\!52}{11\!\cdots\!75}a^{15}-\frac{44\!\cdots\!52}{12\!\cdots\!25}a^{14}+\frac{13\!\cdots\!04}{40\!\cdots\!75}a^{13}-\frac{87\!\cdots\!27}{12\!\cdots\!25}a^{12}+\frac{30\!\cdots\!28}{15\!\cdots\!25}a^{11}-\frac{13\!\cdots\!79}{38\!\cdots\!55}a^{10}+\frac{31\!\cdots\!88}{12\!\cdots\!25}a^{9}-\frac{43\!\cdots\!93}{17\!\cdots\!65}a^{8}+\frac{20\!\cdots\!07}{17\!\cdots\!75}a^{7}-\frac{54\!\cdots\!52}{40\!\cdots\!75}a^{6}+\frac{80\!\cdots\!12}{24\!\cdots\!65}a^{5}-\frac{18\!\cdots\!54}{40\!\cdots\!75}a^{4}+\frac{95\!\cdots\!68}{24\!\cdots\!25}a^{3}-\frac{16\!\cdots\!83}{79\!\cdots\!25}a^{2}+\frac{10\!\cdots\!99}{15\!\cdots\!25}a-\frac{11\!\cdots\!84}{88\!\cdots\!75}$, $\frac{10\!\cdots\!48}{12\!\cdots\!25}a^{27}-\frac{30\!\cdots\!82}{24\!\cdots\!65}a^{26}+\frac{84\!\cdots\!87}{12\!\cdots\!25}a^{25}-\frac{22\!\cdots\!56}{12\!\cdots\!25}a^{24}+\frac{38\!\cdots\!89}{12\!\cdots\!25}a^{23}-\frac{13\!\cdots\!41}{81\!\cdots\!55}a^{22}+\frac{10\!\cdots\!59}{12\!\cdots\!25}a^{21}-\frac{53\!\cdots\!63}{24\!\cdots\!65}a^{20}+\frac{12\!\cdots\!12}{48\!\cdots\!93}a^{19}-\frac{34\!\cdots\!84}{64\!\cdots\!75}a^{18}+\frac{37\!\cdots\!38}{12\!\cdots\!25}a^{17}-\frac{15\!\cdots\!73}{17\!\cdots\!75}a^{16}+\frac{16\!\cdots\!76}{12\!\cdots\!25}a^{15}-\frac{32\!\cdots\!16}{24\!\cdots\!65}a^{14}+\frac{29\!\cdots\!29}{13\!\cdots\!25}a^{13}-\frac{73\!\cdots\!23}{12\!\cdots\!25}a^{12}+\frac{47\!\cdots\!31}{40\!\cdots\!75}a^{11}-\frac{67\!\cdots\!59}{58\!\cdots\!25}a^{10}+\frac{64\!\cdots\!76}{14\!\cdots\!45}a^{9}-\frac{31\!\cdots\!48}{12\!\cdots\!25}a^{8}+\frac{58\!\cdots\!97}{17\!\cdots\!75}a^{7}-\frac{24\!\cdots\!37}{24\!\cdots\!65}a^{6}+\frac{19\!\cdots\!32}{12\!\cdots\!25}a^{5}-\frac{66\!\cdots\!03}{40\!\cdots\!75}a^{4}+\frac{19\!\cdots\!61}{17\!\cdots\!75}a^{3}-\frac{71\!\cdots\!48}{13\!\cdots\!25}a^{2}+\frac{24\!\cdots\!44}{15\!\cdots\!25}a-\frac{32\!\cdots\!03}{12\!\cdots\!75}$, $\frac{30\!\cdots\!13}{12\!\cdots\!25}a^{27}-\frac{47\!\cdots\!31}{13\!\cdots\!25}a^{26}+\frac{12\!\cdots\!87}{64\!\cdots\!75}a^{25}-\frac{63\!\cdots\!93}{12\!\cdots\!25}a^{24}+\frac{36\!\cdots\!52}{40\!\cdots\!75}a^{23}-\frac{56\!\cdots\!32}{12\!\cdots\!25}a^{22}+\frac{60\!\cdots\!99}{24\!\cdots\!65}a^{21}-\frac{25\!\cdots\!62}{40\!\cdots\!75}a^{20}+\frac{29\!\cdots\!79}{40\!\cdots\!75}a^{19}-\frac{18\!\cdots\!18}{12\!\cdots\!25}a^{18}+\frac{20\!\cdots\!48}{24\!\cdots\!65}a^{17}-\frac{36\!\cdots\!97}{14\!\cdots\!17}a^{16}+\frac{46\!\cdots\!34}{12\!\cdots\!25}a^{15}-\frac{92\!\cdots\!62}{24\!\cdots\!65}a^{14}+\frac{81\!\cdots\!12}{13\!\cdots\!25}a^{13}-\frac{20\!\cdots\!07}{12\!\cdots\!25}a^{12}+\frac{13\!\cdots\!94}{40\!\cdots\!75}a^{11}-\frac{64\!\cdots\!01}{19\!\cdots\!75}a^{10}+\frac{48\!\cdots\!62}{40\!\cdots\!75}a^{9}-\frac{37\!\cdots\!87}{71\!\cdots\!25}a^{8}+\frac{54\!\cdots\!21}{58\!\cdots\!25}a^{7}-\frac{70\!\cdots\!68}{24\!\cdots\!65}a^{6}+\frac{62\!\cdots\!87}{13\!\cdots\!25}a^{5}-\frac{83\!\cdots\!29}{18\!\cdots\!59}a^{4}+\frac{17\!\cdots\!54}{58\!\cdots\!25}a^{3}-\frac{17\!\cdots\!69}{13\!\cdots\!25}a^{2}+\frac{17\!\cdots\!19}{50\!\cdots\!75}a-\frac{92\!\cdots\!42}{16\!\cdots\!25}$, $\frac{11\!\cdots\!33}{71\!\cdots\!75}a^{27}-\frac{52\!\cdots\!49}{24\!\cdots\!65}a^{26}+\frac{14\!\cdots\!02}{12\!\cdots\!25}a^{25}-\frac{39\!\cdots\!14}{12\!\cdots\!25}a^{24}+\frac{69\!\cdots\!24}{12\!\cdots\!25}a^{23}-\frac{11\!\cdots\!48}{40\!\cdots\!75}a^{22}+\frac{75\!\cdots\!30}{48\!\cdots\!93}a^{21}-\frac{47\!\cdots\!13}{12\!\cdots\!25}a^{20}+\frac{61\!\cdots\!52}{13\!\cdots\!25}a^{19}-\frac{11\!\cdots\!01}{12\!\cdots\!25}a^{18}+\frac{64\!\cdots\!11}{12\!\cdots\!25}a^{17}-\frac{60\!\cdots\!94}{38\!\cdots\!55}a^{16}+\frac{29\!\cdots\!49}{12\!\cdots\!25}a^{15}-\frac{32\!\cdots\!57}{13\!\cdots\!25}a^{14}+\frac{45\!\cdots\!26}{12\!\cdots\!25}a^{13}-\frac{43\!\cdots\!87}{40\!\cdots\!75}a^{12}+\frac{28\!\cdots\!12}{13\!\cdots\!25}a^{11}-\frac{52\!\cdots\!99}{24\!\cdots\!25}a^{10}+\frac{53\!\cdots\!69}{71\!\cdots\!25}a^{9}-\frac{25\!\cdots\!31}{81\!\cdots\!55}a^{8}+\frac{10\!\cdots\!16}{17\!\cdots\!75}a^{7}-\frac{21\!\cdots\!39}{12\!\cdots\!25}a^{6}+\frac{74\!\cdots\!87}{26\!\cdots\!75}a^{5}-\frac{35\!\cdots\!91}{12\!\cdots\!25}a^{4}+\frac{33\!\cdots\!29}{17\!\cdots\!75}a^{3}-\frac{37\!\cdots\!52}{45\!\cdots\!75}a^{2}+\frac{66\!\cdots\!51}{30\!\cdots\!65}a-\frac{51\!\cdots\!34}{16\!\cdots\!25}$, $\frac{50\!\cdots\!03}{40\!\cdots\!75}a^{27}-\frac{80\!\cdots\!43}{48\!\cdots\!93}a^{26}+\frac{42\!\cdots\!80}{48\!\cdots\!93}a^{25}-\frac{25\!\cdots\!77}{12\!\cdots\!25}a^{24}+\frac{41\!\cdots\!79}{12\!\cdots\!25}a^{23}-\frac{51\!\cdots\!29}{24\!\cdots\!65}a^{22}+\frac{13\!\cdots\!79}{12\!\cdots\!25}a^{21}-\frac{30\!\cdots\!48}{12\!\cdots\!25}a^{20}+\frac{27\!\cdots\!54}{12\!\cdots\!25}a^{19}-\frac{26\!\cdots\!24}{40\!\cdots\!75}a^{18}+\frac{94\!\cdots\!34}{24\!\cdots\!65}a^{17}-\frac{59\!\cdots\!59}{58\!\cdots\!25}a^{16}+\frac{28\!\cdots\!03}{21\!\cdots\!25}a^{15}-\frac{14\!\cdots\!89}{12\!\cdots\!25}a^{14}+\frac{29\!\cdots\!22}{12\!\cdots\!25}a^{13}-\frac{18\!\cdots\!89}{26\!\cdots\!75}a^{12}+\frac{30\!\cdots\!82}{24\!\cdots\!65}a^{11}-\frac{17\!\cdots\!61}{17\!\cdots\!75}a^{10}+\frac{12\!\cdots\!22}{81\!\cdots\!55}a^{9}-\frac{60\!\cdots\!02}{21\!\cdots\!25}a^{8}+\frac{77\!\cdots\!74}{17\!\cdots\!75}a^{7}-\frac{14\!\cdots\!23}{12\!\cdots\!25}a^{6}+\frac{20\!\cdots\!48}{12\!\cdots\!25}a^{5}-\frac{18\!\cdots\!31}{12\!\cdots\!25}a^{4}+\frac{37\!\cdots\!09}{43\!\cdots\!95}a^{3}-\frac{92\!\cdots\!55}{28\!\cdots\!83}a^{2}+\frac{69\!\cdots\!02}{88\!\cdots\!25}a-\frac{15\!\cdots\!67}{16\!\cdots\!25}$, $\frac{14\!\cdots\!38}{12\!\cdots\!25}a^{27}-\frac{20\!\cdots\!73}{12\!\cdots\!25}a^{26}+\frac{23\!\cdots\!44}{24\!\cdots\!65}a^{25}-\frac{31\!\cdots\!83}{12\!\cdots\!25}a^{24}+\frac{21\!\cdots\!14}{48\!\cdots\!93}a^{23}-\frac{26\!\cdots\!73}{12\!\cdots\!25}a^{22}+\frac{14\!\cdots\!66}{12\!\cdots\!25}a^{21}-\frac{75\!\cdots\!69}{24\!\cdots\!65}a^{20}+\frac{13\!\cdots\!48}{40\!\cdots\!75}a^{19}-\frac{78\!\cdots\!44}{12\!\cdots\!25}a^{18}+\frac{16\!\cdots\!28}{40\!\cdots\!75}a^{17}-\frac{14\!\cdots\!01}{11\!\cdots\!65}a^{16}+\frac{44\!\cdots\!56}{24\!\cdots\!65}a^{15}-\frac{11\!\cdots\!33}{70\!\cdots\!85}a^{14}+\frac{18\!\cdots\!97}{71\!\cdots\!25}a^{13}-\frac{42\!\cdots\!83}{52\!\cdots\!95}a^{12}+\frac{19\!\cdots\!36}{12\!\cdots\!25}a^{11}-\frac{41\!\cdots\!32}{27\!\cdots\!25}a^{10}+\frac{10\!\cdots\!58}{40\!\cdots\!75}a^{9}-\frac{35\!\cdots\!52}{12\!\cdots\!25}a^{8}+\frac{80\!\cdots\!34}{17\!\cdots\!75}a^{7}-\frac{34\!\cdots\!08}{24\!\cdots\!65}a^{6}+\frac{26\!\cdots\!06}{12\!\cdots\!25}a^{5}-\frac{81\!\cdots\!36}{40\!\cdots\!75}a^{4}+\frac{96\!\cdots\!49}{83\!\cdots\!75}a^{3}-\frac{19\!\cdots\!63}{45\!\cdots\!75}a^{2}+\frac{15\!\cdots\!07}{15\!\cdots\!25}a-\frac{94\!\cdots\!19}{88\!\cdots\!75}$, $\frac{72\!\cdots\!21}{12\!\cdots\!25}a^{27}-\frac{19\!\cdots\!97}{24\!\cdots\!65}a^{26}+\frac{10\!\cdots\!19}{24\!\cdots\!65}a^{25}-\frac{13\!\cdots\!87}{13\!\cdots\!25}a^{24}+\frac{37\!\cdots\!31}{24\!\cdots\!65}a^{23}-\frac{47\!\cdots\!08}{47\!\cdots\!25}a^{22}+\frac{71\!\cdots\!43}{13\!\cdots\!25}a^{21}-\frac{14\!\cdots\!09}{12\!\cdots\!25}a^{20}+\frac{12\!\cdots\!63}{12\!\cdots\!25}a^{19}-\frac{80\!\cdots\!49}{27\!\cdots\!85}a^{18}+\frac{14\!\cdots\!92}{79\!\cdots\!75}a^{17}-\frac{27\!\cdots\!47}{58\!\cdots\!25}a^{16}+\frac{87\!\cdots\!66}{14\!\cdots\!45}a^{15}-\frac{21\!\cdots\!58}{40\!\cdots\!75}a^{14}+\frac{45\!\cdots\!18}{40\!\cdots\!75}a^{13}-\frac{13\!\cdots\!82}{40\!\cdots\!75}a^{12}+\frac{47\!\cdots\!81}{81\!\cdots\!55}a^{11}-\frac{25\!\cdots\!98}{58\!\cdots\!25}a^{10}+\frac{39\!\cdots\!76}{12\!\cdots\!25}a^{9}-\frac{15\!\cdots\!49}{12\!\cdots\!25}a^{8}+\frac{73\!\cdots\!47}{34\!\cdots\!95}a^{7}-\frac{66\!\cdots\!53}{12\!\cdots\!25}a^{6}+\frac{91\!\cdots\!63}{12\!\cdots\!25}a^{5}-\frac{29\!\cdots\!37}{45\!\cdots\!75}a^{4}+\frac{62\!\cdots\!18}{17\!\cdots\!75}a^{3}-\frac{61\!\cdots\!29}{50\!\cdots\!75}a^{2}+\frac{16\!\cdots\!30}{60\!\cdots\!53}a-\frac{54\!\cdots\!44}{16\!\cdots\!25}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 140953741391215.78 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{13}\cdot 140953741391215.78 \cdot 7}{2\cdot\sqrt{295815184798509371659078776791937755272938949172963}}\cr\approx \mathstrut & 2.72918327152723 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 14*x^27 + 80*x^26 - 221*x^25 + 397*x^24 - 1904*x^23 + 10213*x^22 - 26576*x^21 + 32909*x^20 - 65079*x^19 + 350623*x^18 - 1046531*x^17 + 1678487*x^16 - 1771438*x^15 + 2670493*x^14 - 7195176*x^13 + 14367013*x^12 - 15585945*x^11 + 7205726*x^10 - 3208396*x^9 + 37523327*x^8 - 120026000*x^7 + 201372903*x^6 - 215912334*x^5 + 156455683*x^4 - 76691304*x^3 + 25200801*x^2 - 5337738*x + 544563);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{28}$ (as 28T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 56
The 17 conjugacy class representatives for $D_{28}$
Character table for $D_{28}$

Intermediate fields

\(\Q(\sqrt{29}) \), 4.2.170723.1, 7.1.204024399103.1, 14.2.1207152707450866588933661.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: deg 28
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $28$ ${\href{/padicField/3.2.0.1}{2} }^{14}$ ${\href{/padicField/5.2.0.1}{2} }^{13}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ R $28$ ${\href{/padicField/13.2.0.1}{2} }^{13}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{14}$ ${\href{/padicField/19.2.0.1}{2} }^{14}$ ${\href{/padicField/23.14.0.1}{14} }^{2}$ R ${\href{/padicField/31.2.0.1}{2} }^{14}$ $28$ ${\href{/padicField/41.2.0.1}{2} }^{14}$ ${\href{/padicField/43.4.0.1}{4} }^{7}$ ${\href{/padicField/47.2.0.1}{2} }^{14}$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{13}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.2.0.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(29\) Copy content Toggle raw display Deg $28$$28$$1$$27$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.29.2t1.a.a$1$ $ 29 $ \(\Q(\sqrt{29}) \) $C_2$ (as 2T1) $1$ $1$
1.7.2t1.a.a$1$ $ 7 $ \(\Q(\sqrt{-7}) \) $C_2$ (as 2T1) $1$ $-1$
1.203.2t1.a.a$1$ $ 7 \cdot 29 $ \(\Q(\sqrt{-203}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.5887.4t3.c.a$2$ $ 7 \cdot 29^{2}$ 4.2.170723.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.5887.14t3.b.b$2$ $ 7 \cdot 29^{2}$ 14.2.1207152707450866588933661.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.5887.14t3.b.c$2$ $ 7 \cdot 29^{2}$ 14.2.1207152707450866588933661.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.5887.7t2.a.a$2$ $ 7 \cdot 29^{2}$ 7.1.204024399103.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.5887.14t3.b.a$2$ $ 7 \cdot 29^{2}$ 14.2.1207152707450866588933661.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.5887.7t2.a.b$2$ $ 7 \cdot 29^{2}$ 7.1.204024399103.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.5887.7t2.a.c$2$ $ 7 \cdot 29^{2}$ 7.1.204024399103.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.5887.28t10.a.f$2$ $ 7 \cdot 29^{2}$ 28.2.295815184798509371659078776791937755272938949172963.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.5887.28t10.a.b$2$ $ 7 \cdot 29^{2}$ 28.2.295815184798509371659078776791937755272938949172963.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.5887.28t10.a.a$2$ $ 7 \cdot 29^{2}$ 28.2.295815184798509371659078776791937755272938949172963.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.5887.28t10.a.d$2$ $ 7 \cdot 29^{2}$ 28.2.295815184798509371659078776791937755272938949172963.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.5887.28t10.a.c$2$ $ 7 \cdot 29^{2}$ 28.2.295815184798509371659078776791937755272938949172963.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.5887.28t10.a.e$2$ $ 7 \cdot 29^{2}$ 28.2.295815184798509371659078776791937755272938949172963.1 $D_{28}$ (as 28T10) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.