\\ Pari/GP code for working with number field 28.2.2657211910834657108824251865653514862060546875.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^28 - 9*x^27 + 53*x^26 - 226*x^25 + 695*x^24 - 1455*x^23 + 1352*x^22 + 4587*x^21 - 26437*x^20 + 75511*x^19 - 148243*x^18 + 166438*x^17 - 8850*x^16 - 553583*x^15 + 1599191*x^14 - 2514414*x^13 + 2904360*x^12 - 819447*x^11 - 1193138*x^10 + 5517125*x^9 - 17624126*x^8 + 7384001*x^7 - 17552991*x^6 + 11860646*x^5 - 8713168*x^4 - 7406098*x^3 - 9688274*x^2 - 1853761*x - 465059, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])