Normalized defining polynomial
\( x^{28} + 10 x^{26} - 280 x^{24} - 2600 x^{22} + 24800 x^{20} + 288000 x^{18} - 1128000 x^{16} - 72400000 x^{14} - 791360000 x^{12} - 3704000000 x^{10} - 17401600000 x^{8} - 19584000000 x^{6} - 96256000000 x^{4} - 10240000000 x^{2} - 90880000000 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-2443365527501925442977500495872000000000000000000000\)\(\medspace = -\,2^{42}\cdot 5^{21}\cdot 71^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $68.44$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 5, 71$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{20} a^{4}$, $\frac{1}{20} a^{5}$, $\frac{1}{40} a^{6}$, $\frac{1}{40} a^{7}$, $\frac{1}{400} a^{8}$, $\frac{1}{400} a^{9}$, $\frac{1}{800} a^{10}$, $\frac{1}{800} a^{11}$, $\frac{1}{8000} a^{12}$, $\frac{1}{8000} a^{13}$, $\frac{1}{16000} a^{14}$, $\frac{1}{16000} a^{15}$, $\frac{1}{1120000} a^{16} + \frac{3}{112000} a^{14} + \frac{1}{56000} a^{12} + \frac{1}{2800} a^{10} + \frac{3}{2800} a^{8} - \frac{1}{140} a^{6} - \frac{3}{140} a^{4} + \frac{1}{14} a^{2} + \frac{3}{7}$, $\frac{1}{1120000} a^{17} + \frac{3}{112000} a^{15} + \frac{1}{56000} a^{13} + \frac{1}{2800} a^{11} + \frac{3}{2800} a^{9} - \frac{1}{140} a^{7} - \frac{3}{140} a^{5} + \frac{1}{14} a^{3} + \frac{3}{7} a$, $\frac{1}{2240000} a^{18} - \frac{1}{56000} a^{14} + \frac{1}{28000} a^{12} + \frac{1}{5600} a^{10} + \frac{1}{2800} a^{8} - \frac{1}{280} a^{6} + \frac{1}{140} a^{4} + \frac{1}{7} a^{2} - \frac{3}{7}$, $\frac{1}{2240000} a^{19} - \frac{1}{56000} a^{15} + \frac{1}{28000} a^{13} + \frac{1}{5600} a^{11} + \frac{1}{2800} a^{9} - \frac{1}{280} a^{7} + \frac{1}{140} a^{5} + \frac{1}{7} a^{3} - \frac{3}{7} a$, $\frac{1}{22400000} a^{20} - \frac{1}{56000} a^{14} + \frac{3}{56000} a^{12} - \frac{1}{1400} a^{8} - \frac{1}{280} a^{6} + \frac{3}{140} a^{4} - \frac{1}{7}$, $\frac{1}{22400000} a^{21} - \frac{1}{56000} a^{15} + \frac{3}{56000} a^{13} - \frac{1}{1400} a^{9} - \frac{1}{280} a^{7} + \frac{3}{140} a^{5} - \frac{1}{7} a$, $\frac{1}{44800000} a^{22} - \frac{1}{56000} a^{14} + \frac{3}{56000} a^{12} - \frac{3}{5600} a^{10} - \frac{3}{2800} a^{8} - \frac{3}{280} a^{6} - \frac{1}{70} a^{4} + \frac{1}{7} a^{2} + \frac{2}{7}$, $\frac{1}{44800000} a^{23} - \frac{1}{56000} a^{15} + \frac{3}{56000} a^{13} - \frac{3}{5600} a^{11} - \frac{3}{2800} a^{9} - \frac{3}{280} a^{7} - \frac{1}{70} a^{5} + \frac{1}{7} a^{3} + \frac{2}{7} a$, $\frac{1}{40768000000} a^{24} - \frac{43}{4076800000} a^{22} - \frac{23}{2038400000} a^{20} + \frac{31}{203840000} a^{18} + \frac{1}{1274000} a^{14} + \frac{101}{5096000} a^{12} - \frac{101}{254800} a^{10} + \frac{33}{63700} a^{8} + \frac{19}{6370} a^{6} - \frac{17}{3185} a^{4} + \frac{271}{1274} a^{2} - \frac{178}{637}$, $\frac{1}{40768000000} a^{25} - \frac{43}{4076800000} a^{23} - \frac{23}{2038400000} a^{21} + \frac{31}{203840000} a^{19} + \frac{1}{1274000} a^{15} + \frac{101}{5096000} a^{13} - \frac{101}{254800} a^{11} + \frac{33}{63700} a^{9} + \frac{19}{6370} a^{7} - \frac{17}{3185} a^{5} + \frac{271}{1274} a^{3} - \frac{178}{637} a$, $\frac{1}{12013927979311236518304128000000} a^{26} - \frac{769079677129429317}{107267214100993183199144000000} a^{24} - \frac{217511656150610514179}{42906885640397273279657600000} a^{22} - \frac{6058747029483599664607}{300348199482780912957603200000} a^{20} + \frac{19826373471189467779}{150174099741390456478801600} a^{18} + \frac{381730111821791694919}{938588123383690352992510000} a^{16} + \frac{5605738803562426732347}{750870498706952282394008000} a^{14} - \frac{778541379741508756591}{15017409974139045647880160} a^{12} - \frac{6796658613818907916109}{18771762467673807059850200} a^{10} + \frac{7624096038230621431899}{37543524935347614119700400} a^{8} + \frac{2209279803260204442773}{750870498706952282394008} a^{6} + \frac{1372647680754925492917}{268168035252482957997860} a^{4} - \frac{33268151691021561836269}{187717624676738070598502} a^{2} - \frac{9170651213542823661245}{93858812338369035299251}$, $\frac{1}{12013927979311236518304128000000} a^{27} - \frac{769079677129429317}{107267214100993183199144000000} a^{25} - \frac{217511656150610514179}{42906885640397273279657600000} a^{23} - \frac{6058747029483599664607}{300348199482780912957603200000} a^{21} + \frac{19826373471189467779}{150174099741390456478801600} a^{19} + \frac{381730111821791694919}{938588123383690352992510000} a^{17} + \frac{5605738803562426732347}{750870498706952282394008000} a^{15} - \frac{778541379741508756591}{15017409974139045647880160} a^{13} - \frac{6796658613818907916109}{18771762467673807059850200} a^{11} + \frac{7624096038230621431899}{37543524935347614119700400} a^{9} + \frac{2209279803260204442773}{750870498706952282394008} a^{7} + \frac{1372647680754925492917}{268168035252482957997860} a^{5} - \frac{33268151691021561836269}{187717624676738070598502} a^{3} - \frac{9170651213542823661245}{93858812338369035299251} a$
Class group and class number
not computed
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.568000.1, 7.1.357911.1, 14.2.10007834681328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $28$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
5 | Data not computed | ||||||
$71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.71.2t1.a.a | $1$ | $ 71 $ | \(\Q(\sqrt{-71}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.355.2t1.a.a | $1$ | $ 5 \cdot 71 $ | \(\Q(\sqrt{-355}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.113600.4t3.c.a | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 4.2.568000.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.1775.14t3.b.b | $2$ | $ 5^{2} \cdot 71 $ | 14.2.10007834681328125.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.1775.14t3.b.a | $2$ | $ 5^{2} \cdot 71 $ | 14.2.10007834681328125.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.71.7t2.a.a | $2$ | $ 71 $ | 7.1.357911.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.71.7t2.a.c | $2$ | $ 71 $ | 7.1.357911.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.1775.14t3.b.c | $2$ | $ 5^{2} \cdot 71 $ | 14.2.10007834681328125.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.71.7t2.a.b | $2$ | $ 71 $ | 7.1.357911.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.113600.28t10.a.b | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 28.2.2443365527501925442977500495872000000000000000000000.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.113600.28t10.a.e | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 28.2.2443365527501925442977500495872000000000000000000000.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.113600.28t10.a.f | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 28.2.2443365527501925442977500495872000000000000000000000.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.113600.28t10.a.d | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 28.2.2443365527501925442977500495872000000000000000000000.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.113600.28t10.a.a | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 28.2.2443365527501925442977500495872000000000000000000000.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.113600.28t10.a.c | $2$ | $ 2^{6} \cdot 5^{2} \cdot 71 $ | 28.2.2443365527501925442977500495872000000000000000000000.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |