Normalized defining polynomial
\( x^{28} - 4 x^{26} - 30 x^{24} - 16 x^{22} + 656 x^{20} + 480 x^{18} + 3424 x^{16} + 19424 x^{14} - 154080 x^{12} - 456704 x^{10} + 937984 x^{8} + 503040 x^{6} - 4576768 x^{4} - 11580416 x^{2} - 4807552 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-176063041267001389140042149944365540215401480192\)\(\medspace = -\,2^{77}\cdot 71^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $48.68$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 71$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{32} a^{20}$, $\frac{1}{32} a^{21}$, $\frac{1}{2912} a^{22} - \frac{1}{1456} a^{20} - \frac{5}{208} a^{18} - \frac{17}{728} a^{16} + \frac{3}{91} a^{14} + \frac{45}{728} a^{12} - \frac{1}{91} a^{10} - \frac{9}{182} a^{8} - \frac{23}{182} a^{6} + \frac{3}{182} a^{4} - \frac{9}{91} a^{2} - \frac{6}{91}$, $\frac{1}{2912} a^{23} - \frac{1}{1456} a^{21} - \frac{5}{208} a^{19} - \frac{17}{728} a^{17} + \frac{3}{91} a^{15} + \frac{45}{728} a^{13} - \frac{1}{91} a^{11} - \frac{9}{182} a^{9} - \frac{23}{182} a^{7} + \frac{3}{182} a^{5} - \frac{9}{91} a^{3} - \frac{6}{91} a$, $\frac{1}{64064} a^{24} + \frac{3}{32032} a^{22} + \frac{115}{16016} a^{20} + \frac{207}{16016} a^{18} - \frac{29}{2288} a^{16} - \frac{109}{8008} a^{14} - \frac{461}{8008} a^{12} - \frac{120}{1001} a^{10} + \frac{90}{1001} a^{8} - \frac{227}{2002} a^{6} - \frac{179}{2002} a^{4} - \frac{31}{77} a^{2} + \frac{340}{1001}$, $\frac{1}{1473472} a^{25} + \frac{1}{52624} a^{23} - \frac{377}{28336} a^{21} - \frac{2547}{92092} a^{19} + \frac{1107}{92092} a^{17} + \frac{10165}{184184} a^{15} + \frac{11045}{184184} a^{13} + \frac{739}{46046} a^{11} + \frac{5167}{92092} a^{9} - \frac{5245}{23023} a^{7} - \frac{73}{23023} a^{5} - \frac{502}{23023} a^{3} - \frac{2729}{23023} a$, $\frac{1}{31072587482850164757602754982740416} a^{26} + \frac{232588595896330740523074175}{231884981215299736997035484945824} a^{24} + \frac{345190813779755627394039258665}{3884073435356270594700344372842552} a^{22} - \frac{3492231388720837219268480851305}{2219470534489297482685911070195744} a^{20} - \frac{1644052341521095943812560313371}{165279720653458323178738058418832} a^{18} - \frac{5794794727369111634131578280267}{1109735267244648741342955535097872} a^{16} - \frac{123484906580180305161841216105}{7512714575157196508124457200856} a^{14} + \frac{76685401588874098690457217908507}{3884073435356270594700344372842552} a^{12} + \frac{31141371268059151237690029962980}{485509179419533824337543046605319} a^{10} - \frac{2316552305131545879769451028427}{44137198129048529485231186055029} a^{8} + \frac{28579434918584516972733299908571}{971018358839067648675086093210638} a^{6} - \frac{917400758252157927362003628814}{44137198129048529485231186055029} a^{4} + \frac{7128613927912634488266257361216}{28559363495266695549267238035607} a^{2} + \frac{863169067047532598000892529}{22870091828137633630295494211}$, $\frac{1}{31072587482850164757602754982740416} a^{27} + \frac{150430822380416474697828891}{463769962430599473994070969891648} a^{25} + \frac{542765580305168346810716691059}{7768146870712541189400688745685104} a^{23} + \frac{26037003206933635923468266518253}{2219470534489297482685911070195744} a^{21} + \frac{2927109632421899638173343291641}{165279720653458323178738058418832} a^{19} - \frac{19134465283332997277473581682879}{1109735267244648741342955535097872} a^{17} + \frac{339292789030317649378586626399}{6356912332825320122259156093032} a^{15} - \frac{78115816485864194841197203271689}{1942036717678135297350172186421276} a^{13} + \frac{46698705547409815476055718552493}{971018358839067648675086093210638} a^{11} - \frac{210890032306243705212574210442539}{1942036717678135297350172186421276} a^{9} - \frac{117858276843470574776510190663889}{485509179419533824337543046605319} a^{7} - \frac{8551983847978446874932409442985}{485509179419533824337543046605319} a^{5} + \frac{7751330362548602049649750107334}{28559363495266695549267238035607} a^{3} + \frac{97149022467087302456730758438}{621650677873922950496213888099} a$
Class group and class number
not computed
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.2.145408.1, 7.1.357911.1, 14.2.268645766625492992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $28$ | $28$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.8.2t1.a.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{2}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.71.2t1.a.a | $1$ | $ 71 $ | \(\Q(\sqrt{-71}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.568.2t1.b.a | $1$ | $ 2^{3} \cdot 71 $ | \(\Q(\sqrt{-142}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.18176.4t3.e.a | $2$ | $ 2^{8} \cdot 71 $ | 4.2.145408.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.71.7t2.a.a | $2$ | $ 71 $ | 7.1.357911.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.4544.14t3.b.c | $2$ | $ 2^{6} \cdot 71 $ | 14.2.268645766625492992.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.4544.14t3.b.a | $2$ | $ 2^{6} \cdot 71 $ | 14.2.268645766625492992.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.71.7t2.a.c | $2$ | $ 71 $ | 7.1.357911.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.71.7t2.a.b | $2$ | $ 71 $ | 7.1.357911.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
* | 2.4544.14t3.b.b | $2$ | $ 2^{6} \cdot 71 $ | 14.2.268645766625492992.1 | $D_{14}$ (as 14T3) | $1$ | $0$ |
* | 2.18176.28t10.a.c | $2$ | $ 2^{8} \cdot 71 $ | 28.2.176063041267001389140042149944365540215401480192.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.18176.28t10.a.a | $2$ | $ 2^{8} \cdot 71 $ | 28.2.176063041267001389140042149944365540215401480192.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.18176.28t10.a.d | $2$ | $ 2^{8} \cdot 71 $ | 28.2.176063041267001389140042149944365540215401480192.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.18176.28t10.a.f | $2$ | $ 2^{8} \cdot 71 $ | 28.2.176063041267001389140042149944365540215401480192.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.18176.28t10.a.e | $2$ | $ 2^{8} \cdot 71 $ | 28.2.176063041267001389140042149944365540215401480192.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |
* | 2.18176.28t10.a.b | $2$ | $ 2^{8} \cdot 71 $ | 28.2.176063041267001389140042149944365540215401480192.1 | $D_{28}$ (as 28T10) | $1$ | $0$ |