Normalized defining polynomial
\( x^{28} + 197 x^{24} + 9834 x^{20} + 111451 x^{16} + 395946 x^{12} + 345566 x^{8} + 1437 x^{4} + 1 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(9020522762586308771279473372699929575905800975548416\)\(\medspace = 2^{56}\cdot 29^{24}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $71.70$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $28$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(232=2^{3}\cdot 29\) | ||
Dirichlet character group: | $\lbrace$$\chi_{232}(1,·)$, $\chi_{232}(107,·)$, $\chi_{232}(197,·)$, $\chi_{232}(7,·)$, $\chi_{232}(139,·)$, $\chi_{232}(141,·)$, $\chi_{232}(81,·)$, $\chi_{232}(83,·)$, $\chi_{232}(23,·)$, $\chi_{232}(25,·)$, $\chi_{232}(219,·)$, $\chi_{232}(223,·)$, $\chi_{232}(161,·)$, $\chi_{232}(227,·)$, $\chi_{232}(165,·)$, $\chi_{232}(65,·)$, $\chi_{232}(103,·)$, $\chi_{232}(169,·)$, $\chi_{232}(199,·)$, $\chi_{232}(45,·)$, $\chi_{232}(175,·)$, $\chi_{232}(49,·)$, $\chi_{232}(123,·)$, $\chi_{232}(53,·)$, $\chi_{232}(111,·)$, $\chi_{232}(59,·)$, $\chi_{232}(117,·)$, $\chi_{232}(181,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16} - \frac{1}{17}$, $\frac{1}{17} a^{17} - \frac{1}{17} a$, $\frac{1}{17} a^{18} - \frac{1}{17} a^{2}$, $\frac{1}{17} a^{19} - \frac{1}{17} a^{3}$, $\frac{1}{17} a^{20} - \frac{1}{17} a^{4}$, $\frac{1}{17} a^{21} - \frac{1}{17} a^{5}$, $\frac{1}{17} a^{22} - \frac{1}{17} a^{6}$, $\frac{1}{17} a^{23} - \frac{1}{17} a^{7}$, $\frac{1}{61692893418446977} a^{24} - \frac{555760637084211}{61692893418446977} a^{20} - \frac{1309021780647847}{61692893418446977} a^{16} + \frac{1112648792681163}{3628993730496881} a^{12} - \frac{26589209768599822}{61692893418446977} a^{8} + \frac{14483265078261197}{61692893418446977} a^{4} - \frac{21699345601541164}{61692893418446977}$, $\frac{1}{61692893418446977} a^{25} - \frac{555760637084211}{61692893418446977} a^{21} - \frac{1309021780647847}{61692893418446977} a^{17} + \frac{1112648792681163}{3628993730496881} a^{13} - \frac{26589209768599822}{61692893418446977} a^{9} + \frac{14483265078261197}{61692893418446977} a^{5} - \frac{21699345601541164}{61692893418446977} a$, $\frac{1}{61692893418446977} a^{26} - \frac{555760637084211}{61692893418446977} a^{22} - \frac{1309021780647847}{61692893418446977} a^{18} + \frac{1112648792681163}{3628993730496881} a^{14} - \frac{26589209768599822}{61692893418446977} a^{10} + \frac{14483265078261197}{61692893418446977} a^{6} - \frac{21699345601541164}{61692893418446977} a^{2}$, $\frac{1}{61692893418446977} a^{27} - \frac{555760637084211}{61692893418446977} a^{23} - \frac{1309021780647847}{61692893418446977} a^{19} + \frac{1112648792681163}{3628993730496881} a^{15} - \frac{26589209768599822}{61692893418446977} a^{11} + \frac{14483265078261197}{61692893418446977} a^{7} - \frac{21699345601541164}{61692893418446977} a^{3}$
Class group and class number
$C_{4}\times C_{4}\times C_{1204}$, which has order $19264$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{120147492678582}{61692893418446977} a^{25} + \frac{23669843847044992}{61692893418446977} a^{21} + \frac{1181686024924130293}{61692893418446977} a^{17} + \frac{788139880767185850}{3628993730496881} a^{13} + \frac{47662821025571406002}{61692893418446977} a^{9} + \frac{41841580176291853913}{61692893418446977} a^{5} + \frac{394774270161398293}{61692893418446977} a \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 297452739458.56445 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{14}$ (as 28T2):
An abelian group of order 28 |
The 28 conjugacy class representatives for $C_2\times C_{14}$ |
Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{8})\), 7.7.594823321.1, 14.14.742003380228915810271232.1, 14.0.742003380228915810271232.1, 14.0.5796901408038404767744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{28}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{28}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |
29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |