Properties

Label 28.0.84119824649...2241.1
Degree $28$
Signature $[0, 14]$
Discriminant $19^{14}\cdot 29^{26}$
Root discriminant $99.38$
Ramified primes $19, 29$
Class number Not computed
Class group Not computed
Galois group $C_2\times C_{14}$ (as 28T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![311907554911, -311321664597, 541930532937, -443009324759, 449511995851, -311702665937, 237288842983, -142895968159, 89362532230, -47468325131, 25449411835, -12041626214, 5658735650, -2397439896, 998556167, -379222674, 140523186, -47682224, 15680341, -4712493, 1362190, -356475, 88778, -19574, 4035, -700, 109, -12, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 12*x^27 + 109*x^26 - 700*x^25 + 4035*x^24 - 19574*x^23 + 88778*x^22 - 356475*x^21 + 1362190*x^20 - 4712493*x^19 + 15680341*x^18 - 47682224*x^17 + 140523186*x^16 - 379222674*x^15 + 998556167*x^14 - 2397439896*x^13 + 5658735650*x^12 - 12041626214*x^11 + 25449411835*x^10 - 47468325131*x^9 + 89362532230*x^8 - 142895968159*x^7 + 237288842983*x^6 - 311702665937*x^5 + 449511995851*x^4 - 443009324759*x^3 + 541930532937*x^2 - 311321664597*x + 311907554911)
 
gp: K = bnfinit(x^28 - 12*x^27 + 109*x^26 - 700*x^25 + 4035*x^24 - 19574*x^23 + 88778*x^22 - 356475*x^21 + 1362190*x^20 - 4712493*x^19 + 15680341*x^18 - 47682224*x^17 + 140523186*x^16 - 379222674*x^15 + 998556167*x^14 - 2397439896*x^13 + 5658735650*x^12 - 12041626214*x^11 + 25449411835*x^10 - 47468325131*x^9 + 89362532230*x^8 - 142895968159*x^7 + 237288842983*x^6 - 311702665937*x^5 + 449511995851*x^4 - 443009324759*x^3 + 541930532937*x^2 - 311321664597*x + 311907554911, 1)
 

Normalized defining polynomial

\( x^{28} - 12 x^{27} + 109 x^{26} - 700 x^{25} + 4035 x^{24} - 19574 x^{23} + 88778 x^{22} - 356475 x^{21} + 1362190 x^{20} - 4712493 x^{19} + 15680341 x^{18} - 47682224 x^{17} + 140523186 x^{16} - 379222674 x^{15} + 998556167 x^{14} - 2397439896 x^{13} + 5658735650 x^{12} - 12041626214 x^{11} + 25449411835 x^{10} - 47468325131 x^{9} + 89362532230 x^{8} - 142895968159 x^{7} + 237288842983 x^{6} - 311702665937 x^{5} + 449511995851 x^{4} - 443009324759 x^{3} + 541930532937 x^{2} - 311321664597 x + 311907554911 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $28$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 14]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(84119824649142740425307369706365450159735457977329962241=19^{14}\cdot 29^{26}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $99.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(551=19\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{551}(1,·)$, $\chi_{551}(343,·)$, $\chi_{551}(132,·)$, $\chi_{551}(455,·)$, $\chi_{551}(265,·)$, $\chi_{551}(267,·)$, $\chi_{551}(400,·)$, $\chi_{551}(210,·)$, $\chi_{551}(531,·)$, $\chi_{551}(20,·)$, $\chi_{551}(341,·)$, $\chi_{551}(151,·)$, $\chi_{551}(324,·)$, $\chi_{551}(284,·)$, $\chi_{551}(286,·)$, $\chi_{551}(96,·)$, $\chi_{551}(208,·)$, $\chi_{551}(419,·)$, $\chi_{551}(550,·)$, $\chi_{551}(227,·)$, $\chi_{551}(170,·)$, $\chi_{551}(303,·)$, $\chi_{551}(115,·)$, $\chi_{551}(436,·)$, $\chi_{551}(94,·)$, $\chi_{551}(457,·)$, $\chi_{551}(248,·)$, $\chi_{551}(381,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{41} a^{26} - \frac{16}{41} a^{25} - \frac{13}{41} a^{24} - \frac{9}{41} a^{23} + \frac{11}{41} a^{22} + \frac{14}{41} a^{21} + \frac{2}{41} a^{20} - \frac{9}{41} a^{19} - \frac{2}{41} a^{18} + \frac{7}{41} a^{17} - \frac{11}{41} a^{16} + \frac{10}{41} a^{15} - \frac{12}{41} a^{14} + \frac{12}{41} a^{13} - \frac{11}{41} a^{12} - \frac{7}{41} a^{11} + \frac{11}{41} a^{10} + \frac{14}{41} a^{9} - \frac{18}{41} a^{8} - \frac{14}{41} a^{7} - \frac{6}{41} a^{6} + \frac{1}{41} a^{5} - \frac{8}{41} a^{4} + \frac{7}{41} a^{2} + \frac{16}{41} a + \frac{8}{41}$, $\frac{1}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{27} - \frac{899743915158104831432116063149850164269677787747129310699098308886181235293555010177138916964501841232335190044506249393}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{26} + \frac{29534619550947685181272477545109456690769469971848960509509584182298736150538031291498440435115193944780496541126881968429}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{25} - \frac{11368932700028006905286204547338032029031938835073711188413023762969359564997116942045602307731817651449226861531425480254}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{24} - \frac{26722787565721585664353013783797926161622785960133871282044998497665340584858974358092156777186586009508566131206768340749}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{23} - \frac{37961093918619791697223843075739276018445172915206740349134203509482200226941265234868722176295044803536239768687058422577}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{22} - \frac{40316997773181807600244325335375524144612705437289058020594215664959835960570284213857853359873783841074928246863694615782}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{21} - \frac{38464990360438758036299409207885737232803873412981710741434742653738828829535544794049973636963116466345776993252082052695}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{20} - \frac{40891281350092339484540153751293162487993227736534048627759935222457767578070674588054545554530051531376088526450148291563}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{19} + \frac{7937318670264750644744367802772126911585097950209667988198303317146905600734020092086536465032829407718572034491397122078}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{18} - \frac{40966309625101183542394349456901443656585963106262816903032001225091004442138580615517555627114700959909973243689180952993}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{17} - \frac{10898702173272469750457224460656727481803755590834186632196492063637626355476439150355269208845223346514386177571139189341}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{16} - \frac{28253940486023533979355136844375355083202063239027498196449255285981584788433428893507739874991353438037480841024507250406}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{15} + \frac{409723806185320789153696495561614264827704630835338619942078116285189704400616547071927841710394503200532653077400715479}{2002426395775858329091183741034260312835507619764771574509876719642265737835486838467019684031547477898392340075627452083} a^{14} + \frac{5218771222877016689595020055170695560414218431710955734912839379056782778508794536396402913479902505796637808360225357394}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{13} + \frac{30311040398003425842149015248874152099620775677301253083595515447455478503900132908719685446611629538817911689607635656824}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{12} - \frac{8710835302134134972719131667179535247683484670621427920279394145729869931821584521219289540196910069777275352524415839278}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{11} - \frac{6420025564231500306853457582393094495132169527142429517732225497452882611110504934317233936245340536858583960746242411269}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{10} - \frac{21815863721753774631195346603221403356459956511193136978203286042325632141160443935265443483888450440263094056318289824092}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{9} - \frac{36916045477398196497982544665744748051241241628822610631440132555044371424783034792042728671908530391446022624568521186056}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{8} - \frac{38115748962274585095187519558758303925778191874303571165388287946647701764708999269166198047366156926741926576599600490642}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{7} - \frac{27266133225185405200453985831133285613884307191758486596788786756358040106519061964723418036047702130053823629579515302408}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{6} - \frac{18431298188600384650318604431071021688056800110794268191188643035746224377204137481731578380093103817468215167813989550389}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{5} + \frac{12208758711038696254124293161946965618261653331344148944136941026177259973492701440231801978670446489105644775873765606082}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{4} - \frac{27928132972330860885076562473197657830465727986860061570109530820369579921160388139403042538143727047049547246337223876747}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{3} - \frac{20800196587031848284853599995919056571143546411003110392408560253581876988049435151550646898709563471405476184526353898190}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a^{2} - \frac{28163433423956272765635000753922902425272342746010329252829766129730630916221502355806774569969724069688140772189387102550}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403} a + \frac{40577751682295955767159819561760573424925438715999654784925092856336698866270794275483102465662509665998702246881116277487}{82099482226810191492738533382404672826255812410355634554904945505332895251254960377147807045293446593834085943100725535403}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{14}$ (as 28T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 28
The 28 conjugacy class representatives for $C_2\times C_{14}$
Character table for $C_2\times C_{14}$ is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-551}) \), \(\Q(\sqrt{-19}, \sqrt{29})\), 7.7.594823321.1, \(\Q(\zeta_{29})^+\), 14.0.316265035547780605989332299.1, 14.0.9171686030885637573690636671.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ R ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ R ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
29Data not computed