Normalized defining polynomial
\( x^{28} + 28 x^{26} - 56 x^{25} + 378 x^{24} - 868 x^{23} + 4186 x^{22} - 5556 x^{21} + 26257 x^{20} - 19068 x^{19} + 110236 x^{18} + 22134 x^{17} + 394401 x^{16} + 513058 x^{15} + 2075488 x^{14} + 2977282 x^{13} + 8125894 x^{12} + 13724228 x^{11} + 26391246 x^{10} + 42138278 x^{9} + 55894391 x^{8} + 77662530 x^{7} + 111233549 x^{6} + 123489366 x^{5} + 114888018 x^{4} + 69822746 x^{3} + 45073133 x^{2} + 55406190 x + 35681291 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7909732906157957559057675256932747228387119659164368896=2^{42}\cdot 7^{50}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(392=2^{3}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{392}(1,·)$, $\chi_{392}(83,·)$, $\chi_{392}(195,·)$, $\chi_{392}(211,·)$, $\chi_{392}(321,·)$, $\chi_{392}(363,·)$, $\chi_{392}(265,·)$, $\chi_{392}(139,·)$, $\chi_{392}(337,·)$, $\chi_{392}(209,·)$, $\chi_{392}(323,·)$, $\chi_{392}(251,·)$, $\chi_{392}(153,·)$, $\chi_{392}(267,·)$, $\chi_{392}(281,·)$, $\chi_{392}(27,·)$, $\chi_{392}(225,·)$, $\chi_{392}(155,·)$, $\chi_{392}(97,·)$, $\chi_{392}(41,·)$, $\chi_{392}(43,·)$, $\chi_{392}(99,·)$, $\chi_{392}(113,·)$, $\chi_{392}(307,·)$, $\chi_{392}(169,·)$, $\chi_{392}(57,·)$, $\chi_{392}(379,·)$, $\chi_{392}(377,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{67} a^{21} + \frac{5}{67} a^{20} - \frac{8}{67} a^{19} + \frac{18}{67} a^{18} - \frac{3}{67} a^{17} - \frac{30}{67} a^{16} - \frac{24}{67} a^{15} - \frac{6}{67} a^{14} - \frac{18}{67} a^{13} + \frac{9}{67} a^{12} - \frac{21}{67} a^{11} - \frac{16}{67} a^{10} - \frac{12}{67} a^{9} - \frac{6}{67} a^{8} + \frac{15}{67} a^{7} - \frac{8}{67} a^{6} - \frac{22}{67} a^{5} + \frac{7}{67} a^{4} + \frac{20}{67} a^{3} + \frac{21}{67} a^{2} - \frac{24}{67} a + \frac{5}{67}$, $\frac{1}{67} a^{22} - \frac{33}{67} a^{20} - \frac{9}{67} a^{19} - \frac{26}{67} a^{18} - \frac{15}{67} a^{17} - \frac{8}{67} a^{16} - \frac{20}{67} a^{15} + \frac{12}{67} a^{14} + \frac{32}{67} a^{13} + \frac{1}{67} a^{12} + \frac{22}{67} a^{11} + \frac{1}{67} a^{10} - \frac{13}{67} a^{9} - \frac{22}{67} a^{8} - \frac{16}{67} a^{7} + \frac{18}{67} a^{6} - \frac{17}{67} a^{5} - \frac{15}{67} a^{4} - \frac{12}{67} a^{3} + \frac{5}{67} a^{2} - \frac{9}{67} a - \frac{25}{67}$, $\frac{1}{67} a^{23} + \frac{22}{67} a^{20} - \frac{22}{67} a^{19} - \frac{24}{67} a^{18} + \frac{27}{67} a^{17} - \frac{5}{67} a^{16} + \frac{24}{67} a^{15} - \frac{32}{67} a^{14} + \frac{10}{67} a^{13} - \frac{16}{67} a^{12} - \frac{22}{67} a^{11} - \frac{5}{67} a^{10} - \frac{16}{67} a^{9} - \frac{13}{67} a^{8} - \frac{23}{67} a^{7} - \frac{13}{67} a^{6} - \frac{4}{67} a^{5} + \frac{18}{67} a^{4} - \frac{5}{67} a^{3} + \frac{14}{67} a^{2} - \frac{13}{67} a + \frac{31}{67}$, $\frac{1}{67} a^{24} + \frac{2}{67} a^{20} + \frac{18}{67} a^{19} + \frac{33}{67} a^{18} - \frac{6}{67} a^{17} + \frac{14}{67} a^{16} + \frac{27}{67} a^{15} + \frac{8}{67} a^{14} - \frac{22}{67} a^{13} - \frac{19}{67} a^{12} - \frac{12}{67} a^{11} + \frac{1}{67} a^{10} - \frac{17}{67} a^{9} - \frac{25}{67} a^{8} - \frac{8}{67} a^{7} - \frac{29}{67} a^{6} + \frac{33}{67} a^{5} - \frac{25}{67} a^{4} - \frac{24}{67} a^{3} - \frac{6}{67} a^{2} + \frac{23}{67} a + \frac{24}{67}$, $\frac{1}{67} a^{25} + \frac{8}{67} a^{20} - \frac{18}{67} a^{19} + \frac{25}{67} a^{18} + \frac{20}{67} a^{17} + \frac{20}{67} a^{16} - \frac{11}{67} a^{15} - \frac{10}{67} a^{14} + \frac{17}{67} a^{13} - \frac{30}{67} a^{12} - \frac{24}{67} a^{11} + \frac{15}{67} a^{10} - \frac{1}{67} a^{9} + \frac{4}{67} a^{8} + \frac{8}{67} a^{7} - \frac{18}{67} a^{6} + \frac{19}{67} a^{5} + \frac{29}{67} a^{4} + \frac{21}{67} a^{3} - \frac{19}{67} a^{2} + \frac{5}{67} a - \frac{10}{67}$, $\frac{1}{1576931733195372221} a^{26} - \frac{4150341623905808}{1576931733195372221} a^{25} - \frac{2657632206156344}{1576931733195372221} a^{24} - \frac{9987786518363792}{1576931733195372221} a^{23} + \frac{7298027809862549}{1576931733195372221} a^{22} + \frac{8938447327198090}{1576931733195372221} a^{21} - \frac{727513707888720124}{1576931733195372221} a^{20} + \frac{1019341427621525}{50868765586947491} a^{19} - \frac{784960489963949978}{1576931733195372221} a^{18} + \frac{626185983900685521}{1576931733195372221} a^{17} + \frac{706437562704659449}{1576931733195372221} a^{16} - \frac{107967479057790500}{1576931733195372221} a^{15} + \frac{653185799082094023}{1576931733195372221} a^{14} - \frac{391805805173717165}{1576931733195372221} a^{13} - \frac{169048510140108072}{1576931733195372221} a^{12} - \frac{699977320758685137}{1576931733195372221} a^{11} + \frac{187314346129190730}{1576931733195372221} a^{10} + \frac{613624780344167676}{1576931733195372221} a^{9} + \frac{370382401215298051}{1576931733195372221} a^{8} - \frac{400509350844624041}{1576931733195372221} a^{7} + \frac{112752594295864907}{1576931733195372221} a^{6} - \frac{237221264050375398}{1576931733195372221} a^{5} + \frac{593561602952866629}{1576931733195372221} a^{4} - \frac{32458951282831486}{1576931733195372221} a^{3} - \frac{27753969742466388}{1576931733195372221} a^{2} + \frac{106705831083758353}{1576931733195372221} a + \frac{47058262620976743}{1576931733195372221}$, $\frac{1}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{27} - \frac{992450841725750345945855327169159256055382874015347892307873112682117411987}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{26} - \frac{50658354248148756775209558033816893226284934788675170962335928660468654172339328262146875084}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{25} + \frac{1439983800377099459357209469518213106517350589519079236200141751977135559568590377551715367}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{24} - \frac{85281653303325391222822910510260758860757179363910345881349787804223898330491520755671131593}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{23} + \frac{26972093597742992820998525936375155304734594439376650162039163890252964461660085542155685518}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{22} + \frac{7425396455483253785322667265603728808745672330810559366023377740171472424785513492604447537}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{21} - \frac{1445277810225183169192277564030550772358226912322816220969762386827325833008618092007937905920}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{20} - \frac{56069798533543573909934838132374768015360842643410418657887461726189638486166818688282506701}{225427495622095322424615683363122128590246253634581179380934934845567391226525873986570687709} a^{19} - \frac{4452254239817801559634191139504061970491046735927498474436615870817498866274913546562664261520}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{18} + \frac{3787252064894057077712891402600293753409660662797600896193036496287943512128259461696743009660}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{17} - \frac{4806392834307865073877585728629900307183719779664307598319296385787047074657562259506173860975}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{16} + \frac{6471785029952929799493861080652037247939062198928513397667966120895672324795258741117564179663}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{15} - \frac{5330079847416887000536508598149306074913327538807234168929186642135303695206181156306237064776}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{14} + \frac{997762657897104178067642049966739982447837213215998417149242500232359571750527652867236413813}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{13} - \frac{6536203948543123647119212363569100805387716789667152456016605276579641605195957915268491192975}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{12} + \frac{3454739465163675984481011140611618021993023601478151130945694870398674046928284057243964930813}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{11} + \frac{298926295828636849096244191800755378233085731934899988249320131044526078845883947528014250733}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{10} - \frac{1124270460604884510031239827713545440979260981916817890304577568673321135050828579039308465921}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{9} - \frac{17032282123718730116925530666602415785951731092795566352205193380480082849708712393503576985}{40492338355711492231767428378898612910312329741332276189068741647863311560796872807239238811} a^{8} - \frac{16059032500375212875351894194694500611842824082316636259361544622309643980279445441630490620}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{7} + \frac{120279673698112297489602212018662420754758601954134865250527470356565395562768777502485229049}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{6} - \frac{130945931365242057709693565950185536917111759978085360073175001541198246077359564461703597660}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{5} - \frac{2521839289787284648674834935045302486731317257665530305881861487323200483086281183977379702523}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{4} - \frac{738929970888092490527685161101750862682322213031889445123922504565028973865916730707681110655}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{3} + \frac{7466123940570416762880340710905625665384085002379308358000226880933442450297758003442725554790}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a^{2} + \frac{868308448918460705469493219852121300168815234165061886722481497881441311864569025694549960602}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503} a + \frac{989058700045149679923461049488405461801781482426473754891012758695339173580441212838040015898}{15103642206680386602449250785329182615546498993516939018522640634653015212177233557100236076503}$
Class group and class number
$C_{953}$, which has order $953$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5768582549095.03 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ | |
| 7 | Data not computed | ||||||