Normalized defining polynomial
\( x^{28} - 28 x^{26} - 56 x^{25} + 378 x^{24} + 924 x^{23} - 1862 x^{22} - 5444 x^{21} + 2345 x^{20} - 13468 x^{19} + 19348 x^{18} + 281638 x^{17} - 154847 x^{16} - 1262142 x^{15} + 1760256 x^{14} - 141078 x^{13} - 8273370 x^{12} + 16406964 x^{11} + 11480798 x^{10} - 36011178 x^{9} + 5028527 x^{8} + 24278114 x^{7} - 11198019 x^{6} - 38195010 x^{5} + 62510966 x^{4} - 13710102 x^{3} - 17816547 x^{2} + 999110 x + 4391639 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7909732906157957559057675256932747228387119659164368896=2^{42}\cdot 7^{50}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(392=2^{3}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{392}(1,·)$, $\chi_{392}(197,·)$, $\chi_{392}(321,·)$, $\chi_{392}(265,·)$, $\chi_{392}(13,·)$, $\chi_{392}(337,·)$, $\chi_{392}(141,·)$, $\chi_{392}(209,·)$, $\chi_{392}(237,·)$, $\chi_{392}(85,·)$, $\chi_{392}(281,·)$, $\chi_{392}(153,·)$, $\chi_{392}(29,·)$, $\chi_{392}(69,·)$, $\chi_{392}(225,·)$, $\chi_{392}(293,·)$, $\chi_{392}(97,·)$, $\chi_{392}(41,·)$, $\chi_{392}(365,·)$, $\chi_{392}(349,·)$, $\chi_{392}(113,·)$, $\chi_{392}(253,·)$, $\chi_{392}(181,·)$, $\chi_{392}(169,·)$, $\chi_{392}(57,·)$, $\chi_{392}(377,·)$, $\chi_{392}(125,·)$, $\chi_{392}(309,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{79} a^{25} - \frac{21}{79} a^{24} + \frac{10}{79} a^{23} + \frac{34}{79} a^{22} - \frac{28}{79} a^{21} + \frac{32}{79} a^{20} - \frac{34}{79} a^{19} + \frac{8}{79} a^{18} + \frac{37}{79} a^{17} + \frac{5}{79} a^{16} + \frac{16}{79} a^{15} + \frac{8}{79} a^{14} - \frac{38}{79} a^{13} - \frac{36}{79} a^{12} - \frac{39}{79} a^{11} - \frac{22}{79} a^{10} + \frac{35}{79} a^{9} - \frac{12}{79} a^{8} + \frac{35}{79} a^{7} - \frac{24}{79} a^{6} + \frac{2}{79} a^{5} + \frac{22}{79} a^{4} - \frac{18}{79} a^{3} - \frac{19}{79} a^{2} - \frac{25}{79} a - \frac{8}{79}$, $\frac{1}{4018632481368851789} a^{26} + \frac{6478952677844414}{4018632481368851789} a^{25} - \frac{115783692989069473}{4018632481368851789} a^{24} + \frac{244652788859669721}{4018632481368851789} a^{23} - \frac{1813335070774494153}{4018632481368851789} a^{22} - \frac{989800009542384576}{4018632481368851789} a^{21} + \frac{1681617593294137666}{4018632481368851789} a^{20} - \frac{639304876382534036}{4018632481368851789} a^{19} - \frac{1262964557235728217}{4018632481368851789} a^{18} + \frac{258282010181015481}{4018632481368851789} a^{17} + \frac{1500849214044030609}{4018632481368851789} a^{16} - \frac{307027243745483763}{4018632481368851789} a^{15} + \frac{1787024403907720495}{4018632481368851789} a^{14} + \frac{94418405988095999}{4018632481368851789} a^{13} - \frac{1718358288709236117}{4018632481368851789} a^{12} - \frac{1913514260327475094}{4018632481368851789} a^{11} - \frac{841794148223614034}{4018632481368851789} a^{10} - \frac{9423498193817535}{59979589274161967} a^{9} - \frac{1905287859135586273}{4018632481368851789} a^{8} + \frac{1730730448558450788}{4018632481368851789} a^{7} - \frac{977314008986693283}{4018632481368851789} a^{6} + \frac{973777260362670106}{4018632481368851789} a^{5} + \frac{1380474469853392167}{4018632481368851789} a^{4} - \frac{13390793077149921}{4018632481368851789} a^{3} - \frac{1761635553255500862}{4018632481368851789} a^{2} - \frac{578441447542658276}{4018632481368851789} a + \frac{278851469964607743}{4018632481368851789}$, $\frac{1}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{27} + \frac{81416627306187379222860564203549707327049591324504599851017129852714378717181882}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{26} - \frac{92980883480151970262775895781248541866349432436441644097403096182293067605328867072338771761136456}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{25} - \frac{5470859170582322685381568301740290143411882770959909289952932034852514328410731745295072901648011976}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{24} + \frac{390883792738998301839353344592176901712571241509644871708812437683045104935446411621293468574006879}{818539005784192497938409890191952815749936270344053019174999168996864447178543497761089630361594471} a^{23} + \frac{2040228649718583371619375660402447122863207242845853879815411994091543626521211103013045825170870237}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{22} - \frac{1505161701492899055971274837753687395138081319150632245592461816626586080296242619162422596961295297}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{21} + \frac{4969045220756258503099331109687510581910190388225028680177871595997913397266846522330596764296430560}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{20} + \frac{6898510279286762116970499206238081063349608491223946240500450726777046928051202780002820534966287335}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{19} + \frac{3592938925117631535501025394683739942708461179253159268862998696051216809502532853284422331658612673}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{18} + \frac{7196422028424084832339235976876045077740305187430873496198307788141786874861842333342791812681109295}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{17} + \frac{379907306199027451632055696353556652339711449165706338382493259230621624750648188992405506599176454}{818539005784192497938409890191952815749936270344053019174999168996864447178543497761089630361594471} a^{16} - \frac{4780612908584551387562649826115165726793984306600204803634344988604051495039971911020043154871113071}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{15} + \frac{18969401280506665422384872816039931135393022263865346525431229649723337597011556028528627072749192}{196863811517717183048478328020849411382896065019455789421835243176461069574586410853932949074307531} a^{14} - \frac{861357318634977504840025949137623144989781486057481361958820142235480363889035018205519229939625777}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{13} + \frac{1777683709842351508372323009197556830641510267478676545493708801743221343399514635671347561737512160}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{12} - \frac{3190418226739487440277812004371885023211925281584955968499498486869547682927631221747959484579682329}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{11} - \frac{3279651979042192859510317178193601930504077372521452059774756264782544417709301906096912410923212032}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{10} - \frac{5162476209483851261026631415189090918260655874477419835381253429905202595112136930145248966391089142}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{9} - \frac{3110937149623382047144672405375083572175599396565354052248461727113437302165629796433085434774601746}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{8} + \frac{18089525042468743075837013895071275424777232709400582864549842544137408873509359067357396462383146}{78945386344668311983907552861152809640856797647395976468654742187514845159351910951577172471422817} a^{7} + \frac{7365838591436713367324646753558011563401783626992522668395399675896455821745716172878707944208095991}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{6} + \frac{4057561654778012007461340010335600542742893306459051011064248697335470940299302952433547688361501832}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{5} - \frac{768029634173423046417718658059562248861425074135839080847121672283226927242263384071668056172785870}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{4} + \frac{1757036528597650292713191888669902397373771196929593841615391702994321546264158741646277998286994735}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{3} - \frac{6316816883814535322440956814702145306474059691234044632772640375332238764960757472735136060931634710}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a^{2} + \frac{2310792419184339360045839479783325954467626447181455629257703703397021581916661917783746729615735208}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949} a - \frac{4877233129527957514176589162548334218065321279826562551750618423679877916729146270624113095978776194}{15552241109899657460829787913647103499248789136537007364324984210940424496392326457460702976870294949}$
Class group and class number
$C_{1234}$, which has order $1234$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6078393112068.115 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ | |
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |