Properties

Label 28.0.761...125.1
Degree $28$
Signature $[0, 14]$
Discriminant $7.614\times 10^{53}$
Root discriminant \(84.01\)
Ramified primes $5,43$
Class number $22709$ (GRH)
Class group [22709] (GRH)
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801)
 
gp: K = bnfinit(y^28 - y^27 + 19*y^26 - 2*y^25 + 271*y^24 - 992*y^23 + 5175*y^22 - 15390*y^21 + 63548*y^20 - 148986*y^19 + 389755*y^18 - 780480*y^17 + 1682463*y^16 - 2675897*y^15 + 5128339*y^14 - 7532046*y^13 + 13393480*y^12 - 18209154*y^11 + 29065829*y^10 - 34016343*y^9 + 48229826*y^8 - 40181120*y^7 + 44171883*y^6 - 25868717*y^5 + 23880346*y^4 + 7983325*y^3 + 12353145*y^2 + 823543*y + 5764801, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801)
 

\( x^{28} - x^{27} + 19 x^{26} - 2 x^{25} + 271 x^{24} - 992 x^{23} + 5175 x^{22} - 15390 x^{21} + \cdots + 5764801 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(761400267340438731808185095577412659073352813720703125\) \(\medspace = 5^{21}\cdot 43^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(84.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}43^{6/7}\approx 84.01238662362125$
Ramified primes:   \(5\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $28$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(215=5\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{215}(64,·)$, $\chi_{215}(1,·)$, $\chi_{215}(4,·)$, $\chi_{215}(133,·)$, $\chi_{215}(193,·)$, $\chi_{215}(11,·)$, $\chi_{215}(78,·)$, $\chi_{215}(207,·)$, $\chi_{215}(16,·)$, $\chi_{215}(84,·)$, $\chi_{215}(21,·)$, $\chi_{215}(87,·)$, $\chi_{215}(127,·)$, $\chi_{215}(97,·)$, $\chi_{215}(164,·)$, $\chi_{215}(102,·)$, $\chi_{215}(41,·)$, $\chi_{215}(107,·)$, $\chi_{215}(44,·)$, $\chi_{215}(173,·)$, $\chi_{215}(47,·)$, $\chi_{215}(176,·)$, $\chi_{215}(54,·)$, $\chi_{215}(183,·)$, $\chi_{215}(121,·)$, $\chi_{215}(59,·)$, $\chi_{215}(188,·)$, $\chi_{215}(213,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{8192}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7}a^{17}-\frac{2}{7}a^{16}-\frac{1}{7}a^{15}-\frac{2}{7}a^{12}-\frac{2}{7}a^{11}-\frac{1}{7}a^{9}-\frac{2}{7}a^{7}+\frac{2}{7}a^{6}-\frac{1}{7}a^{3}+\frac{2}{7}a^{2}+\frac{1}{7}a$, $\frac{1}{7}a^{18}+\frac{2}{7}a^{16}-\frac{2}{7}a^{15}-\frac{2}{7}a^{13}+\frac{1}{7}a^{12}+\frac{3}{7}a^{11}-\frac{1}{7}a^{10}-\frac{2}{7}a^{9}-\frac{2}{7}a^{8}-\frac{2}{7}a^{7}-\frac{3}{7}a^{6}-\frac{1}{7}a^{4}-\frac{2}{7}a^{2}+\frac{2}{7}a$, $\frac{1}{7}a^{19}+\frac{2}{7}a^{16}+\frac{2}{7}a^{15}-\frac{2}{7}a^{14}+\frac{1}{7}a^{13}+\frac{3}{7}a^{11}-\frac{2}{7}a^{10}-\frac{2}{7}a^{8}+\frac{1}{7}a^{7}+\frac{3}{7}a^{6}-\frac{1}{7}a^{5}-\frac{2}{7}a^{2}-\frac{2}{7}a$, $\frac{1}{7}a^{20}-\frac{1}{7}a^{16}+\frac{1}{7}a^{14}+\frac{2}{7}a^{11}+\frac{1}{7}a^{8}+\frac{2}{7}a^{6}+\frac{1}{7}a^{2}-\frac{2}{7}a$, $\frac{1}{7}a^{21}-\frac{2}{7}a^{16}-\frac{2}{7}a^{11}+\frac{2}{7}a^{6}+\frac{1}{7}a$, $\frac{1}{49}a^{22}-\frac{1}{49}a^{21}-\frac{2}{49}a^{20}-\frac{2}{49}a^{19}-\frac{2}{49}a^{18}+\frac{2}{49}a^{17}+\frac{16}{49}a^{16}-\frac{11}{49}a^{15}+\frac{23}{49}a^{14}-\frac{19}{49}a^{13}+\frac{2}{49}a^{12}-\frac{15}{49}a^{11}-\frac{22}{49}a^{10}-\frac{2}{7}a^{9}-\frac{15}{49}a^{8}+\frac{17}{49}a^{7}-\frac{12}{49}a^{6}-\frac{19}{49}a^{5}-\frac{12}{49}a^{4}-\frac{18}{49}a^{3}+\frac{22}{49}a^{2}+\frac{1}{7}a$, $\frac{1}{343}a^{23}-\frac{1}{343}a^{22}+\frac{19}{343}a^{21}-\frac{2}{343}a^{20}-\frac{23}{343}a^{19}-\frac{12}{343}a^{18}-\frac{19}{343}a^{17}+\frac{143}{343}a^{16}-\frac{5}{343}a^{15}+\frac{121}{343}a^{14}-\frac{89}{343}a^{13}-\frac{106}{343}a^{12}+\frac{146}{343}a^{11}+\frac{20}{49}a^{10}-\frac{50}{343}a^{9}-\frac{109}{343}a^{8}-\frac{82}{343}a^{7}-\frac{117}{343}a^{6}-\frac{40}{343}a^{5}+\frac{45}{343}a^{4}-\frac{41}{343}a^{3}-\frac{20}{49}a^{2}+\frac{2}{7}a$, $\frac{1}{2401}a^{24}-\frac{1}{2401}a^{23}+\frac{19}{2401}a^{22}-\frac{2}{2401}a^{21}-\frac{72}{2401}a^{20}+\frac{37}{2401}a^{19}+\frac{30}{2401}a^{18}+\frac{45}{2401}a^{17}+\frac{779}{2401}a^{16}-\frac{810}{2401}a^{15}+\frac{793}{2401}a^{14}-\frac{841}{2401}a^{13}-\frac{638}{2401}a^{12}+\frac{76}{343}a^{11}+\frac{489}{2401}a^{10}-\frac{452}{2401}a^{9}-\frac{1013}{2401}a^{8}-\frac{313}{2401}a^{7}+\frac{9}{2401}a^{6}-\frac{4}{2401}a^{5}-\frac{1119}{2401}a^{4}+\frac{141}{343}a^{3}+\frac{3}{7}a^{2}+\frac{3}{7}a$, $\frac{1}{32\!\cdots\!27}a^{25}+\frac{57\!\cdots\!76}{32\!\cdots\!27}a^{24}+\frac{30\!\cdots\!61}{32\!\cdots\!27}a^{23}-\frac{19\!\cdots\!58}{32\!\cdots\!27}a^{22}+\frac{58\!\cdots\!78}{32\!\cdots\!27}a^{21}-\frac{19\!\cdots\!29}{32\!\cdots\!27}a^{20}-\frac{19\!\cdots\!36}{32\!\cdots\!27}a^{19}+\frac{19\!\cdots\!74}{32\!\cdots\!27}a^{18}-\frac{36\!\cdots\!25}{32\!\cdots\!27}a^{17}-\frac{92\!\cdots\!96}{32\!\cdots\!27}a^{16}+\frac{33\!\cdots\!21}{32\!\cdots\!27}a^{15}-\frac{22\!\cdots\!04}{32\!\cdots\!27}a^{14}-\frac{13\!\cdots\!78}{32\!\cdots\!27}a^{13}-\frac{48\!\cdots\!85}{45\!\cdots\!61}a^{12}-\frac{77\!\cdots\!19}{32\!\cdots\!27}a^{11}-\frac{42\!\cdots\!40}{32\!\cdots\!27}a^{10}-\frac{11\!\cdots\!86}{32\!\cdots\!27}a^{9}+\frac{10\!\cdots\!00}{32\!\cdots\!27}a^{8}-\frac{71\!\cdots\!17}{32\!\cdots\!27}a^{7}-\frac{53\!\cdots\!06}{32\!\cdots\!27}a^{6}-\frac{15\!\cdots\!29}{32\!\cdots\!27}a^{5}+\frac{10\!\cdots\!87}{45\!\cdots\!61}a^{4}-\frac{50\!\cdots\!59}{65\!\cdots\!23}a^{3}+\frac{71\!\cdots\!64}{93\!\cdots\!89}a^{2}-\frac{62\!\cdots\!06}{13\!\cdots\!27}a-\frac{32\!\cdots\!69}{19\!\cdots\!61}$, $\frac{1}{22\!\cdots\!89}a^{26}-\frac{1}{22\!\cdots\!89}a^{25}+\frac{41\!\cdots\!18}{22\!\cdots\!89}a^{24}+\frac{10\!\cdots\!73}{22\!\cdots\!89}a^{23}+\frac{63\!\cdots\!78}{22\!\cdots\!89}a^{22}+\frac{57\!\cdots\!83}{89\!\cdots\!39}a^{21}-\frac{88\!\cdots\!61}{22\!\cdots\!89}a^{20}+\frac{83\!\cdots\!51}{22\!\cdots\!89}a^{19}+\frac{24\!\cdots\!97}{22\!\cdots\!89}a^{18}-\frac{15\!\cdots\!04}{22\!\cdots\!89}a^{17}-\frac{28\!\cdots\!83}{22\!\cdots\!89}a^{16}-\frac{38\!\cdots\!19}{22\!\cdots\!89}a^{15}-\frac{21\!\cdots\!72}{22\!\cdots\!89}a^{14}-\frac{11\!\cdots\!53}{32\!\cdots\!27}a^{13}-\frac{48\!\cdots\!32}{22\!\cdots\!89}a^{12}+\frac{32\!\cdots\!64}{22\!\cdots\!89}a^{11}+\frac{79\!\cdots\!83}{22\!\cdots\!89}a^{10}-\frac{31\!\cdots\!29}{22\!\cdots\!89}a^{9}+\frac{84\!\cdots\!09}{22\!\cdots\!89}a^{8}+\frac{92\!\cdots\!26}{22\!\cdots\!89}a^{7}-\frac{98\!\cdots\!24}{22\!\cdots\!89}a^{6}-\frac{78\!\cdots\!75}{32\!\cdots\!27}a^{5}+\frac{22\!\cdots\!53}{65\!\cdots\!23}a^{4}+\frac{28\!\cdots\!13}{65\!\cdots\!23}a^{3}+\frac{17\!\cdots\!14}{93\!\cdots\!89}a^{2}+\frac{22\!\cdots\!54}{13\!\cdots\!27}a-\frac{43\!\cdots\!23}{19\!\cdots\!61}$, $\frac{1}{15\!\cdots\!23}a^{27}-\frac{1}{15\!\cdots\!23}a^{26}+\frac{19}{15\!\cdots\!23}a^{25}+\frac{15\!\cdots\!95}{15\!\cdots\!23}a^{24}-\frac{35\!\cdots\!46}{15\!\cdots\!23}a^{23}+\frac{14\!\cdots\!88}{15\!\cdots\!23}a^{22}-\frac{15\!\cdots\!16}{15\!\cdots\!23}a^{21}+\frac{40\!\cdots\!71}{15\!\cdots\!23}a^{20}-\frac{86\!\cdots\!43}{15\!\cdots\!23}a^{19}-\frac{10\!\cdots\!87}{15\!\cdots\!23}a^{18}+\frac{42\!\cdots\!88}{15\!\cdots\!23}a^{17}+\frac{51\!\cdots\!95}{15\!\cdots\!23}a^{16}-\frac{44\!\cdots\!58}{15\!\cdots\!23}a^{15}+\frac{19\!\cdots\!18}{22\!\cdots\!89}a^{14}+\frac{27\!\cdots\!41}{15\!\cdots\!23}a^{13}-\frac{48\!\cdots\!50}{15\!\cdots\!23}a^{12}-\frac{18\!\cdots\!89}{15\!\cdots\!23}a^{11}-\frac{13\!\cdots\!92}{15\!\cdots\!23}a^{10}-\frac{45\!\cdots\!90}{15\!\cdots\!23}a^{9}+\frac{36\!\cdots\!09}{15\!\cdots\!23}a^{8}-\frac{31\!\cdots\!52}{15\!\cdots\!23}a^{7}+\frac{94\!\cdots\!70}{22\!\cdots\!89}a^{6}+\frac{15\!\cdots\!43}{45\!\cdots\!61}a^{5}-\frac{16\!\cdots\!87}{45\!\cdots\!61}a^{4}-\frac{53\!\cdots\!50}{65\!\cdots\!23}a^{3}+\frac{30\!\cdots\!35}{93\!\cdots\!89}a^{2}-\frac{56\!\cdots\!92}{13\!\cdots\!27}a-\frac{81\!\cdots\!29}{19\!\cdots\!61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{22709}$, which has order $22709$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{70220814453860710580553707086}{2246210454323338022279430189123505789} a^{27} - \frac{120659019081760610783289161490}{2246210454323338022279430189123505789} a^{26} - \frac{1154947606149024845074896498125}{2246210454323338022279430189123505789} a^{25} - \frac{3407557417182082902908974628068}{2246210454323338022279430189123505789} a^{24} - \frac{18981794896580453133774938925984}{2246210454323338022279430189123505789} a^{23} + \frac{19323659388000564487917108289429}{2246210454323338022279430189123505789} a^{22} - \frac{178096248356299103221707191089670}{2246210454323338022279430189123505789} a^{21} + \frac{17645751505787261192992298656953}{320887207760476860325632884160500827} a^{20} - \frac{1661455884553231665811686746839509}{2246210454323338022279430189123505789} a^{19} - \frac{1083283569166520313047937200374943}{2246210454323338022279430189123505789} a^{18} - \frac{951846835754421608798909739219524}{2246210454323338022279430189123505789} a^{17} - \frac{12781578253908014304081934558858070}{2246210454323338022279430189123505789} a^{16} + \frac{13319275271081107839227437618785619}{2246210454323338022279430189123505789} a^{15} - \frac{90050268824623924251463287368066267}{2246210454323338022279430189123505789} a^{14} + \frac{61712352397684241315681986981001065}{2246210454323338022279430189123505789} a^{13} - \frac{269717301971673203334500318033172174}{2246210454323338022279430189123505789} a^{12} + \frac{187014368528249038375671844588167646}{2246210454323338022279430189123505789} a^{11} - \frac{733550900163919810630608118245160595}{2246210454323338022279430189123505789} a^{10} + \frac{603207698864065550681493850891682300}{2246210454323338022279430189123505789} a^{9} - \frac{249859539373104234605028014007978264}{320887207760476860325632884160500827} a^{8} + \frac{22976647791279739766503878722934555}{45841029680068122903661840594357261} a^{7} - \frac{3441128838597687257967575498670369091}{2246210454323338022279430189123505789} a^{6} + \frac{381663061969921831083574236853189}{935531217960573936809425318252189} a^{5} - \frac{106247788101030931987881998489912}{133647316851510562401346474036027} a^{4} - \frac{7777879158849992916672382976973}{19092473835930080343049496290861} a^{3} - \frac{6933381469233825949953618657544}{19092473835930080343049496290861} a^{2} - \frac{30684604813553860367287072480428}{19092473835930080343049496290861} a - \frac{3169176231272924174885515990855}{19092473835930080343049496290861} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{94\!\cdots\!86}{22\!\cdots\!89}a^{27}-\frac{60\!\cdots\!27}{22\!\cdots\!89}a^{26}+\frac{17\!\cdots\!97}{22\!\cdots\!89}a^{25}+\frac{44\!\cdots\!68}{32\!\cdots\!27}a^{24}+\frac{37\!\cdots\!35}{32\!\cdots\!27}a^{23}-\frac{86\!\cdots\!71}{22\!\cdots\!89}a^{22}+\frac{66\!\cdots\!01}{32\!\cdots\!27}a^{21}-\frac{13\!\cdots\!22}{22\!\cdots\!89}a^{20}+\frac{57\!\cdots\!85}{22\!\cdots\!89}a^{19}-\frac{26\!\cdots\!68}{45\!\cdots\!61}a^{18}+\frac{72\!\cdots\!45}{45\!\cdots\!61}a^{17}-\frac{72\!\cdots\!36}{22\!\cdots\!89}a^{16}+\frac{22\!\cdots\!37}{32\!\cdots\!27}a^{15}-\frac{26\!\cdots\!80}{22\!\cdots\!89}a^{14}+\frac{52\!\cdots\!47}{22\!\cdots\!89}a^{13}-\frac{78\!\cdots\!93}{22\!\cdots\!89}a^{12}+\frac{14\!\cdots\!98}{22\!\cdots\!89}a^{11}-\frac{28\!\cdots\!30}{32\!\cdots\!27}a^{10}+\frac{46\!\cdots\!56}{32\!\cdots\!27}a^{9}-\frac{40\!\cdots\!19}{22\!\cdots\!89}a^{8}+\frac{58\!\cdots\!76}{22\!\cdots\!89}a^{7}-\frac{58\!\cdots\!16}{22\!\cdots\!89}a^{6}+\frac{14\!\cdots\!21}{45\!\cdots\!61}a^{5}-\frac{18\!\cdots\!04}{65\!\cdots\!23}a^{4}+\frac{15\!\cdots\!94}{65\!\cdots\!23}a^{3}-\frac{26\!\cdots\!00}{19\!\cdots\!61}a^{2}+\frac{21\!\cdots\!89}{19\!\cdots\!61}a+\frac{43\!\cdots\!29}{19\!\cdots\!61}$, $\frac{27\!\cdots\!25}{45\!\cdots\!61}a^{27}-\frac{39\!\cdots\!45}{32\!\cdots\!27}a^{26}+\frac{33\!\cdots\!54}{32\!\cdots\!27}a^{25}-\frac{37\!\cdots\!75}{32\!\cdots\!27}a^{24}+\frac{41\!\cdots\!65}{32\!\cdots\!27}a^{23}-\frac{24\!\cdots\!80}{32\!\cdots\!27}a^{22}+\frac{10\!\cdots\!30}{32\!\cdots\!27}a^{21}-\frac{35\!\cdots\!10}{32\!\cdots\!27}a^{20}+\frac{17\!\cdots\!85}{45\!\cdots\!61}a^{19}-\frac{13\!\cdots\!05}{12\!\cdots\!77}a^{18}+\frac{71\!\cdots\!90}{32\!\cdots\!27}a^{17}-\frac{15\!\cdots\!80}{32\!\cdots\!27}a^{16}+\frac{25\!\cdots\!95}{32\!\cdots\!27}a^{15}-\frac{47\!\cdots\!20}{32\!\cdots\!27}a^{14}+\frac{71\!\cdots\!10}{32\!\cdots\!27}a^{13}-\frac{12\!\cdots\!25}{32\!\cdots\!27}a^{12}+\frac{17\!\cdots\!70}{32\!\cdots\!27}a^{11}-\frac{38\!\cdots\!17}{32\!\cdots\!27}a^{10}+\frac{33\!\cdots\!00}{32\!\cdots\!27}a^{9}-\frac{47\!\cdots\!25}{32\!\cdots\!27}a^{8}+\frac{57\!\cdots\!70}{45\!\cdots\!61}a^{7}-\frac{12\!\cdots\!75}{93\!\cdots\!89}a^{6}-\frac{48\!\cdots\!31}{32\!\cdots\!27}a^{5}-\frac{93\!\cdots\!70}{13\!\cdots\!27}a^{4}-\frac{42\!\cdots\!90}{19\!\cdots\!61}a^{3}-\frac{70\!\cdots\!70}{19\!\cdots\!61}a^{2}-\frac{29\!\cdots\!35}{19\!\cdots\!61}a-\frac{90\!\cdots\!91}{19\!\cdots\!61}$, $\frac{16\!\cdots\!96}{22\!\cdots\!89}a^{27}-\frac{12\!\cdots\!11}{22\!\cdots\!89}a^{26}+\frac{30\!\cdots\!01}{22\!\cdots\!89}a^{25}+\frac{31\!\cdots\!30}{22\!\cdots\!89}a^{24}+\frac{43\!\cdots\!71}{22\!\cdots\!89}a^{23}-\frac{15\!\cdots\!41}{22\!\cdots\!89}a^{22}+\frac{79\!\cdots\!08}{22\!\cdots\!89}a^{21}-\frac{23\!\cdots\!58}{22\!\cdots\!89}a^{20}+\frac{97\!\cdots\!03}{22\!\cdots\!89}a^{19}-\frac{21\!\cdots\!83}{22\!\cdots\!89}a^{18}+\frac{57\!\cdots\!23}{22\!\cdots\!89}a^{17}-\frac{11\!\cdots\!74}{22\!\cdots\!89}a^{16}+\frac{24\!\cdots\!56}{22\!\cdots\!89}a^{15}-\frac{54\!\cdots\!59}{32\!\cdots\!27}a^{14}+\frac{74\!\cdots\!76}{22\!\cdots\!89}a^{13}-\frac{10\!\cdots\!62}{22\!\cdots\!89}a^{12}+\frac{19\!\cdots\!65}{22\!\cdots\!89}a^{11}-\frac{26\!\cdots\!26}{22\!\cdots\!89}a^{10}+\frac{41\!\cdots\!26}{22\!\cdots\!89}a^{9}-\frac{49\!\cdots\!48}{22\!\cdots\!89}a^{8}+\frac{69\!\cdots\!41}{22\!\cdots\!89}a^{7}-\frac{82\!\cdots\!42}{32\!\cdots\!27}a^{6}+\frac{18\!\cdots\!71}{65\!\cdots\!23}a^{5}-\frac{88\!\cdots\!63}{45\!\cdots\!61}a^{4}+\frac{14\!\cdots\!58}{93\!\cdots\!89}a^{3}+\frac{69\!\cdots\!34}{13\!\cdots\!27}a^{2}+\frac{15\!\cdots\!46}{19\!\cdots\!61}a+\frac{10\!\cdots\!45}{19\!\cdots\!61}$, $\frac{52\!\cdots\!55}{45\!\cdots\!61}a^{27}-\frac{76\!\cdots\!23}{32\!\cdots\!27}a^{26}+\frac{62\!\cdots\!24}{32\!\cdots\!27}a^{25}-\frac{72\!\cdots\!45}{32\!\cdots\!27}a^{24}+\frac{79\!\cdots\!91}{32\!\cdots\!27}a^{23}-\frac{47\!\cdots\!92}{32\!\cdots\!27}a^{22}+\frac{20\!\cdots\!82}{32\!\cdots\!27}a^{21}-\frac{66\!\cdots\!03}{32\!\cdots\!27}a^{20}+\frac{34\!\cdots\!39}{45\!\cdots\!61}a^{19}-\frac{25\!\cdots\!07}{12\!\cdots\!77}a^{18}+\frac{13\!\cdots\!06}{32\!\cdots\!27}a^{17}-\frac{29\!\cdots\!92}{32\!\cdots\!27}a^{16}+\frac{53\!\cdots\!72}{32\!\cdots\!27}a^{15}-\frac{90\!\cdots\!68}{32\!\cdots\!27}a^{14}+\frac{13\!\cdots\!54}{32\!\cdots\!27}a^{13}-\frac{24\!\cdots\!15}{32\!\cdots\!27}a^{12}+\frac{33\!\cdots\!58}{32\!\cdots\!27}a^{11}-\frac{57\!\cdots\!13}{32\!\cdots\!27}a^{10}+\frac{64\!\cdots\!80}{32\!\cdots\!27}a^{9}-\frac{90\!\cdots\!55}{32\!\cdots\!27}a^{8}+\frac{11\!\cdots\!18}{45\!\cdots\!61}a^{7}-\frac{24\!\cdots\!05}{93\!\cdots\!89}a^{6}-\frac{17\!\cdots\!43}{32\!\cdots\!27}a^{5}-\frac{17\!\cdots\!58}{13\!\cdots\!27}a^{4}-\frac{81\!\cdots\!66}{19\!\cdots\!61}a^{3}-\frac{13\!\cdots\!38}{19\!\cdots\!61}a^{2}-\frac{56\!\cdots\!89}{19\!\cdots\!61}a-\frac{70\!\cdots\!73}{19\!\cdots\!61}$, $\frac{48\!\cdots\!28}{22\!\cdots\!89}a^{27}+\frac{80\!\cdots\!73}{22\!\cdots\!89}a^{26}+\frac{79\!\cdots\!50}{22\!\cdots\!89}a^{25}+\frac{23\!\cdots\!64}{22\!\cdots\!89}a^{24}+\frac{13\!\cdots\!32}{22\!\cdots\!89}a^{23}-\frac{13\!\cdots\!42}{22\!\cdots\!89}a^{22}+\frac{12\!\cdots\!39}{22\!\cdots\!89}a^{21}-\frac{12\!\cdots\!94}{32\!\cdots\!27}a^{20}+\frac{11\!\cdots\!82}{22\!\cdots\!89}a^{19}+\frac{74\!\cdots\!14}{22\!\cdots\!89}a^{18}+\frac{65\!\cdots\!52}{22\!\cdots\!89}a^{17}+\frac{94\!\cdots\!44}{22\!\cdots\!89}a^{16}-\frac{91\!\cdots\!62}{22\!\cdots\!89}a^{15}+\frac{62\!\cdots\!66}{22\!\cdots\!89}a^{14}-\frac{42\!\cdots\!70}{22\!\cdots\!89}a^{13}+\frac{18\!\cdots\!52}{22\!\cdots\!89}a^{12}-\frac{13\!\cdots\!65}{22\!\cdots\!89}a^{11}+\frac{50\!\cdots\!10}{22\!\cdots\!89}a^{10}-\frac{41\!\cdots\!00}{22\!\cdots\!89}a^{9}+\frac{17\!\cdots\!72}{32\!\cdots\!27}a^{8}-\frac{15\!\cdots\!90}{45\!\cdots\!61}a^{7}+\frac{24\!\cdots\!62}{22\!\cdots\!89}a^{6}-\frac{26\!\cdots\!22}{93\!\cdots\!89}a^{5}+\frac{73\!\cdots\!76}{13\!\cdots\!27}a^{4}+\frac{53\!\cdots\!54}{19\!\cdots\!61}a^{3}+\frac{47\!\cdots\!12}{19\!\cdots\!61}a^{2}+\frac{11\!\cdots\!41}{19\!\cdots\!61}a+\frac{21\!\cdots\!90}{19\!\cdots\!61}$, $\frac{10\!\cdots\!72}{22\!\cdots\!89}a^{27}-\frac{10\!\cdots\!43}{22\!\cdots\!89}a^{26}+\frac{20\!\cdots\!80}{22\!\cdots\!89}a^{25}-\frac{27\!\cdots\!94}{22\!\cdots\!89}a^{24}+\frac{29\!\cdots\!41}{22\!\cdots\!89}a^{23}-\frac{10\!\cdots\!41}{22\!\cdots\!89}a^{22}+\frac{55\!\cdots\!63}{22\!\cdots\!89}a^{21}-\frac{16\!\cdots\!13}{22\!\cdots\!89}a^{20}+\frac{66\!\cdots\!53}{22\!\cdots\!89}a^{19}-\frac{15\!\cdots\!62}{22\!\cdots\!89}a^{18}+\frac{39\!\cdots\!90}{22\!\cdots\!89}a^{17}-\frac{76\!\cdots\!99}{22\!\cdots\!89}a^{16}+\frac{16\!\cdots\!43}{22\!\cdots\!89}a^{15}-\frac{49\!\cdots\!37}{45\!\cdots\!61}a^{14}+\frac{46\!\cdots\!10}{22\!\cdots\!89}a^{13}-\frac{64\!\cdots\!42}{22\!\cdots\!89}a^{12}+\frac{11\!\cdots\!53}{22\!\cdots\!89}a^{11}-\frac{15\!\cdots\!38}{22\!\cdots\!89}a^{10}+\frac{23\!\cdots\!42}{22\!\cdots\!89}a^{9}-\frac{26\!\cdots\!37}{22\!\cdots\!89}a^{8}+\frac{34\!\cdots\!47}{22\!\cdots\!89}a^{7}-\frac{67\!\cdots\!03}{65\!\cdots\!23}a^{6}+\frac{60\!\cdots\!94}{65\!\cdots\!23}a^{5}-\frac{18\!\cdots\!33}{93\!\cdots\!89}a^{4}+\frac{87\!\cdots\!66}{13\!\cdots\!27}a^{3}+\frac{65\!\cdots\!30}{93\!\cdots\!89}a^{2}+\frac{15\!\cdots\!31}{19\!\cdots\!61}a-\frac{19\!\cdots\!78}{19\!\cdots\!61}$, $\frac{10\!\cdots\!82}{15\!\cdots\!23}a^{27}-\frac{52\!\cdots\!78}{15\!\cdots\!23}a^{26}+\frac{34\!\cdots\!84}{15\!\cdots\!23}a^{25}-\frac{10\!\cdots\!42}{15\!\cdots\!23}a^{24}+\frac{48\!\cdots\!82}{15\!\cdots\!23}a^{23}-\frac{23\!\cdots\!70}{15\!\cdots\!23}a^{22}+\frac{11\!\cdots\!00}{15\!\cdots\!23}a^{21}-\frac{51\!\cdots\!96}{15\!\cdots\!23}a^{20}+\frac{18\!\cdots\!12}{15\!\cdots\!23}a^{19}-\frac{61\!\cdots\!16}{15\!\cdots\!23}a^{18}+\frac{17\!\cdots\!20}{15\!\cdots\!23}a^{17}-\frac{42\!\cdots\!26}{15\!\cdots\!23}a^{16}+\frac{89\!\cdots\!34}{15\!\cdots\!23}a^{15}-\frac{37\!\cdots\!82}{32\!\cdots\!27}a^{14}+\frac{31\!\cdots\!14}{15\!\cdots\!23}a^{13}-\frac{55\!\cdots\!80}{15\!\cdots\!23}a^{12}+\frac{84\!\cdots\!68}{15\!\cdots\!23}a^{11}-\frac{14\!\cdots\!78}{15\!\cdots\!23}a^{10}+\frac{20\!\cdots\!46}{15\!\cdots\!23}a^{9}-\frac{32\!\cdots\!73}{15\!\cdots\!23}a^{8}+\frac{37\!\cdots\!00}{15\!\cdots\!23}a^{7}-\frac{10\!\cdots\!74}{32\!\cdots\!27}a^{6}+\frac{89\!\cdots\!26}{32\!\cdots\!27}a^{5}-\frac{13\!\cdots\!24}{45\!\cdots\!61}a^{4}+\frac{90\!\cdots\!66}{65\!\cdots\!23}a^{3}-\frac{18\!\cdots\!50}{13\!\cdots\!27}a^{2}-\frac{50\!\cdots\!14}{13\!\cdots\!27}a-\frac{14\!\cdots\!34}{19\!\cdots\!61}$, $\frac{21\!\cdots\!42}{15\!\cdots\!23}a^{27}-\frac{17\!\cdots\!75}{15\!\cdots\!23}a^{26}+\frac{38\!\cdots\!39}{15\!\cdots\!23}a^{25}+\frac{18\!\cdots\!44}{15\!\cdots\!23}a^{24}+\frac{55\!\cdots\!97}{15\!\cdots\!23}a^{23}-\frac{20\!\cdots\!62}{15\!\cdots\!23}a^{22}+\frac{10\!\cdots\!75}{15\!\cdots\!23}a^{21}-\frac{30\!\cdots\!80}{15\!\cdots\!23}a^{20}+\frac{12\!\cdots\!01}{15\!\cdots\!23}a^{19}-\frac{28\!\cdots\!48}{15\!\cdots\!23}a^{18}+\frac{73\!\cdots\!33}{15\!\cdots\!23}a^{17}-\frac{14\!\cdots\!50}{15\!\cdots\!23}a^{16}+\frac{31\!\cdots\!99}{15\!\cdots\!23}a^{15}-\frac{70\!\cdots\!98}{22\!\cdots\!89}a^{14}+\frac{96\!\cdots\!49}{15\!\cdots\!23}a^{13}-\frac{14\!\cdots\!16}{15\!\cdots\!23}a^{12}+\frac{24\!\cdots\!92}{15\!\cdots\!23}a^{11}-\frac{33\!\cdots\!46}{15\!\cdots\!23}a^{10}+\frac{53\!\cdots\!28}{15\!\cdots\!23}a^{9}-\frac{61\!\cdots\!07}{15\!\cdots\!23}a^{8}+\frac{87\!\cdots\!78}{15\!\cdots\!23}a^{7}-\frac{10\!\cdots\!10}{22\!\cdots\!89}a^{6}+\frac{31\!\cdots\!87}{65\!\cdots\!23}a^{5}-\frac{30\!\cdots\!10}{93\!\cdots\!89}a^{4}+\frac{15\!\cdots\!18}{65\!\cdots\!23}a^{3}+\frac{26\!\cdots\!11}{13\!\cdots\!27}a^{2}+\frac{24\!\cdots\!55}{19\!\cdots\!61}a-\frac{18\!\cdots\!40}{19\!\cdots\!61}$, $\frac{10\!\cdots\!57}{22\!\cdots\!89}a^{27}-\frac{16\!\cdots\!84}{22\!\cdots\!89}a^{26}+\frac{20\!\cdots\!67}{22\!\cdots\!89}a^{25}-\frac{13\!\cdots\!73}{22\!\cdots\!89}a^{24}+\frac{28\!\cdots\!02}{22\!\cdots\!89}a^{23}-\frac{12\!\cdots\!04}{22\!\cdots\!89}a^{22}+\frac{60\!\cdots\!85}{22\!\cdots\!89}a^{21}-\frac{19\!\cdots\!54}{22\!\cdots\!89}a^{20}+\frac{76\!\cdots\!15}{22\!\cdots\!89}a^{19}-\frac{19\!\cdots\!53}{22\!\cdots\!89}a^{18}+\frac{51\!\cdots\!29}{22\!\cdots\!89}a^{17}-\frac{10\!\cdots\!53}{22\!\cdots\!89}a^{16}+\frac{23\!\cdots\!18}{22\!\cdots\!89}a^{15}-\frac{41\!\cdots\!77}{22\!\cdots\!89}a^{14}+\frac{77\!\cdots\!96}{22\!\cdots\!89}a^{13}-\frac{17\!\cdots\!83}{32\!\cdots\!27}a^{12}+\frac{21\!\cdots\!88}{22\!\cdots\!89}a^{11}-\frac{31\!\cdots\!89}{22\!\cdots\!89}a^{10}+\frac{48\!\cdots\!53}{22\!\cdots\!89}a^{9}-\frac{65\!\cdots\!49}{22\!\cdots\!89}a^{8}+\frac{88\!\cdots\!00}{22\!\cdots\!89}a^{7}-\frac{97\!\cdots\!77}{22\!\cdots\!89}a^{6}+\frac{21\!\cdots\!32}{45\!\cdots\!61}a^{5}-\frac{28\!\cdots\!74}{65\!\cdots\!23}a^{4}+\frac{25\!\cdots\!92}{65\!\cdots\!23}a^{3}-\frac{40\!\cdots\!11}{19\!\cdots\!61}a^{2}+\frac{17\!\cdots\!56}{19\!\cdots\!61}a-\frac{31\!\cdots\!38}{19\!\cdots\!61}$, $\frac{15\!\cdots\!56}{15\!\cdots\!23}a^{27}-\frac{28\!\cdots\!28}{15\!\cdots\!23}a^{26}+\frac{29\!\cdots\!19}{15\!\cdots\!23}a^{25}-\frac{27\!\cdots\!91}{15\!\cdots\!23}a^{24}+\frac{39\!\cdots\!60}{15\!\cdots\!23}a^{23}-\frac{19\!\cdots\!47}{15\!\cdots\!23}a^{22}+\frac{89\!\cdots\!53}{15\!\cdots\!23}a^{21}-\frac{29\!\cdots\!61}{15\!\cdots\!23}a^{20}+\frac{11\!\cdots\!71}{15\!\cdots\!23}a^{19}-\frac{29\!\cdots\!56}{15\!\cdots\!23}a^{18}+\frac{72\!\cdots\!25}{15\!\cdots\!23}a^{17}-\frac{15\!\cdots\!54}{15\!\cdots\!23}a^{16}+\frac{31\!\cdots\!40}{15\!\cdots\!23}a^{15}-\frac{45\!\cdots\!27}{12\!\cdots\!77}a^{14}+\frac{96\!\cdots\!14}{15\!\cdots\!23}a^{13}-\frac{15\!\cdots\!77}{15\!\cdots\!23}a^{12}+\frac{25\!\cdots\!22}{15\!\cdots\!23}a^{11}-\frac{38\!\cdots\!89}{15\!\cdots\!23}a^{10}+\frac{55\!\cdots\!40}{15\!\cdots\!23}a^{9}-\frac{73\!\cdots\!50}{15\!\cdots\!23}a^{8}+\frac{90\!\cdots\!43}{15\!\cdots\!23}a^{7}-\frac{27\!\cdots\!82}{45\!\cdots\!61}a^{6}+\frac{16\!\cdots\!91}{32\!\cdots\!27}a^{5}-\frac{27\!\cdots\!46}{65\!\cdots\!23}a^{4}+\frac{12\!\cdots\!61}{65\!\cdots\!23}a^{3}+\frac{30\!\cdots\!83}{93\!\cdots\!89}a^{2}-\frac{70\!\cdots\!10}{19\!\cdots\!61}a+\frac{30\!\cdots\!86}{19\!\cdots\!61}$, $\frac{13\!\cdots\!81}{15\!\cdots\!23}a^{27}-\frac{24\!\cdots\!43}{15\!\cdots\!23}a^{26}+\frac{25\!\cdots\!27}{15\!\cdots\!23}a^{25}-\frac{23\!\cdots\!16}{15\!\cdots\!23}a^{24}+\frac{34\!\cdots\!15}{15\!\cdots\!23}a^{23}-\frac{16\!\cdots\!07}{15\!\cdots\!23}a^{22}+\frac{77\!\cdots\!63}{15\!\cdots\!23}a^{21}-\frac{25\!\cdots\!16}{15\!\cdots\!23}a^{20}+\frac{97\!\cdots\!36}{15\!\cdots\!23}a^{19}-\frac{25\!\cdots\!41}{15\!\cdots\!23}a^{18}+\frac{64\!\cdots\!55}{15\!\cdots\!23}a^{17}-\frac{13\!\cdots\!14}{15\!\cdots\!23}a^{16}+\frac{28\!\cdots\!15}{15\!\cdots\!23}a^{15}-\frac{10\!\cdots\!37}{32\!\cdots\!27}a^{14}+\frac{88\!\cdots\!84}{15\!\cdots\!23}a^{13}-\frac{14\!\cdots\!52}{15\!\cdots\!23}a^{12}+\frac{23\!\cdots\!12}{15\!\cdots\!23}a^{11}-\frac{35\!\cdots\!29}{15\!\cdots\!23}a^{10}+\frac{51\!\cdots\!40}{15\!\cdots\!23}a^{9}-\frac{67\!\cdots\!25}{15\!\cdots\!23}a^{8}+\frac{85\!\cdots\!73}{15\!\cdots\!23}a^{7}-\frac{25\!\cdots\!07}{45\!\cdots\!61}a^{6}+\frac{17\!\cdots\!63}{32\!\cdots\!27}a^{5}-\frac{26\!\cdots\!36}{65\!\cdots\!23}a^{4}+\frac{12\!\cdots\!51}{65\!\cdots\!23}a^{3}+\frac{39\!\cdots\!93}{93\!\cdots\!89}a^{2}-\frac{69\!\cdots\!15}{19\!\cdots\!61}a+\frac{79\!\cdots\!17}{19\!\cdots\!61}$, $\frac{71\!\cdots\!25}{15\!\cdots\!23}a^{27}-\frac{66\!\cdots\!06}{15\!\cdots\!23}a^{26}+\frac{13\!\cdots\!99}{15\!\cdots\!23}a^{25}+\frac{49\!\cdots\!46}{15\!\cdots\!23}a^{24}+\frac{19\!\cdots\!94}{15\!\cdots\!23}a^{23}-\frac{68\!\cdots\!31}{15\!\cdots\!23}a^{22}+\frac{36\!\cdots\!46}{15\!\cdots\!23}a^{21}-\frac{10\!\cdots\!01}{15\!\cdots\!23}a^{20}+\frac{44\!\cdots\!02}{15\!\cdots\!23}a^{19}-\frac{10\!\cdots\!02}{15\!\cdots\!23}a^{18}+\frac{26\!\cdots\!57}{15\!\cdots\!23}a^{17}-\frac{50\!\cdots\!33}{15\!\cdots\!23}a^{16}+\frac{10\!\cdots\!30}{15\!\cdots\!23}a^{15}-\frac{23\!\cdots\!01}{22\!\cdots\!89}a^{14}+\frac{31\!\cdots\!19}{15\!\cdots\!23}a^{13}-\frac{44\!\cdots\!62}{15\!\cdots\!23}a^{12}+\frac{80\!\cdots\!93}{15\!\cdots\!23}a^{11}-\frac{10\!\cdots\!92}{15\!\cdots\!23}a^{10}+\frac{16\!\cdots\!42}{15\!\cdots\!23}a^{9}-\frac{18\!\cdots\!36}{15\!\cdots\!23}a^{8}+\frac{24\!\cdots\!65}{15\!\cdots\!23}a^{7}-\frac{25\!\cdots\!09}{22\!\cdots\!89}a^{6}+\frac{51\!\cdots\!07}{45\!\cdots\!61}a^{5}-\frac{29\!\cdots\!31}{65\!\cdots\!23}a^{4}+\frac{18\!\cdots\!72}{65\!\cdots\!23}a^{3}+\frac{32\!\cdots\!41}{93\!\cdots\!89}a^{2}+\frac{34\!\cdots\!16}{19\!\cdots\!61}a-\frac{31\!\cdots\!58}{19\!\cdots\!61}$, $\frac{20\!\cdots\!63}{15\!\cdots\!23}a^{27}+\frac{52\!\cdots\!06}{15\!\cdots\!23}a^{26}+\frac{35\!\cdots\!15}{15\!\cdots\!23}a^{25}+\frac{46\!\cdots\!44}{15\!\cdots\!23}a^{24}+\frac{54\!\cdots\!16}{15\!\cdots\!23}a^{23}-\frac{13\!\cdots\!76}{15\!\cdots\!23}a^{22}+\frac{79\!\cdots\!07}{15\!\cdots\!23}a^{21}-\frac{17\!\cdots\!21}{15\!\cdots\!23}a^{20}+\frac{87\!\cdots\!47}{15\!\cdots\!23}a^{19}-\frac{13\!\cdots\!15}{15\!\cdots\!23}a^{18}+\frac{38\!\cdots\!96}{15\!\cdots\!23}a^{17}-\frac{52\!\cdots\!71}{15\!\cdots\!23}a^{16}+\frac{13\!\cdots\!31}{15\!\cdots\!23}a^{15}-\frac{15\!\cdots\!45}{22\!\cdots\!89}a^{14}+\frac{36\!\cdots\!25}{15\!\cdots\!23}a^{13}-\frac{26\!\cdots\!45}{15\!\cdots\!23}a^{12}+\frac{91\!\cdots\!75}{15\!\cdots\!23}a^{11}-\frac{46\!\cdots\!79}{15\!\cdots\!23}a^{10}+\frac{14\!\cdots\!96}{15\!\cdots\!23}a^{9}-\frac{10\!\cdots\!80}{15\!\cdots\!23}a^{8}+\frac{19\!\cdots\!31}{15\!\cdots\!23}a^{7}+\frac{23\!\cdots\!68}{22\!\cdots\!89}a^{6}+\frac{21\!\cdots\!71}{45\!\cdots\!61}a^{5}+\frac{84\!\cdots\!04}{65\!\cdots\!23}a^{4}+\frac{83\!\cdots\!65}{93\!\cdots\!89}a^{3}+\frac{27\!\cdots\!85}{93\!\cdots\!89}a^{2}-\frac{43\!\cdots\!11}{13\!\cdots\!27}a+\frac{22\!\cdots\!64}{19\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 263819853122.8475 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot 263819853122.8475 \cdot 22709}{10\cdot\sqrt{761400267340438731808185095577412659073352813720703125}}\cr\approx \mathstrut & 0.102616483747313 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - x^27 + 19*x^26 - 2*x^25 + 271*x^24 - 992*x^23 + 5175*x^22 - 15390*x^21 + 63548*x^20 - 148986*x^19 + 389755*x^18 - 780480*x^17 + 1682463*x^16 - 2675897*x^15 + 5128339*x^14 - 7532046*x^13 + 13393480*x^12 - 18209154*x^11 + 29065829*x^10 - 34016343*x^9 + 48229826*x^8 - 40181120*x^7 + 44171883*x^6 - 25868717*x^5 + 23880346*x^4 + 7983325*x^3 + 12353145*x^2 + 823543*x + 5764801);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{28}$ (as 28T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 7.7.6321363049.1, 14.14.3121846156036138781328125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $28$ $28$ R ${\href{/padicField/7.4.0.1}{4} }^{7}$ ${\href{/padicField/11.7.0.1}{7} }^{4}$ $28$ $28$ ${\href{/padicField/19.14.0.1}{14} }^{2}$ $28$ ${\href{/padicField/29.14.0.1}{14} }^{2}$ ${\href{/padicField/31.7.0.1}{7} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{7}$ ${\href{/padicField/41.7.0.1}{7} }^{4}$ R $28$ $28$ ${\href{/padicField/59.14.0.1}{14} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $28$$4$$7$$21$
\(43\) Copy content Toggle raw display Deg $28$$7$$4$$24$