Normalized defining polynomial
\( x^{28} + 4 x^{26} - 63 x^{24} - 188 x^{22} + 1294 x^{20} + 4584 x^{18} - 401 x^{16} - 92448 x^{14} + 55130 x^{12} + 1054280 x^{10} + 684982 x^{8} + 8370860 x^{6} + 17488517 x^{4} - 20759960 x^{2} + 11042329 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7586259643335085676646037106440640773336778620436217856=2^{56}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(232=2^{3}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{232}(1,·)$, $\chi_{232}(67,·)$, $\chi_{232}(197,·)$, $\chi_{232}(51,·)$, $\chi_{232}(65,·)$, $\chi_{232}(141,·)$, $\chi_{232}(63,·)$, $\chi_{232}(207,·)$, $\chi_{232}(115,·)$, $\chi_{232}(81,·)$, $\chi_{232}(151,·)$, $\chi_{232}(25,·)$, $\chi_{232}(91,·)$, $\chi_{232}(231,·)$, $\chi_{232}(161,·)$, $\chi_{232}(35,·)$, $\chi_{232}(165,·)$, $\chi_{232}(167,·)$, $\chi_{232}(169,·)$, $\chi_{232}(71,·)$, $\chi_{232}(45,·)$, $\chi_{232}(49,·)$, $\chi_{232}(179,·)$, $\chi_{232}(181,·)$, $\chi_{232}(183,·)$, $\chi_{232}(187,·)$, $\chi_{232}(117,·)$, $\chi_{232}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{14947} a^{24} - \frac{5184}{14947} a^{22} - \frac{2083}{14947} a^{20} - \frac{6867}{14947} a^{18} + \frac{5596}{14947} a^{16} + \frac{1504}{14947} a^{14} - \frac{6448}{14947} a^{12} - \frac{5364}{14947} a^{10} - \frac{6802}{14947} a^{8} - \frac{2631}{14947} a^{6} - \frac{1594}{14947} a^{4} + \frac{3575}{14947} a^{2} + \frac{4626}{14947}$, $\frac{1}{49668881} a^{25} + \frac{20023796}{49668881} a^{23} + \frac{23748700}{49668881} a^{21} - \frac{18630829}{49668881} a^{19} - \frac{233556}{49668881} a^{17} + \frac{4246452}{49668881} a^{15} + \frac{13834474}{49668881} a^{13} - \frac{21723355}{49668881} a^{11} - \frac{7614825}{49668881} a^{9} - \frac{1168497}{49668881} a^{7} - \frac{11137109}{49668881} a^{5} + \frac{3232127}{49668881} a^{3} + \frac{18628588}{49668881} a$, $\frac{1}{2370770751647005520703394125369730532841602640107} a^{26} - \frac{12023614138798410852010985976045854889142179}{2370770751647005520703394125369730532841602640107} a^{24} - \frac{706137895797102281179880112182408503722400501756}{2370770751647005520703394125369730532841602640107} a^{22} - \frac{391872708948767182263900349856799463082171648977}{2370770751647005520703394125369730532841602640107} a^{20} + \frac{1059267035064473249788206915545195113315017875214}{2370770751647005520703394125369730532841602640107} a^{18} + \frac{783935310046315299886763557514858764710661893946}{2370770751647005520703394125369730532841602640107} a^{16} + \frac{604642556747457307272275760823082705335608465988}{2370770751647005520703394125369730532841602640107} a^{14} + \frac{1156997576343948167978344271823732643754332555057}{2370770751647005520703394125369730532841602640107} a^{12} - \frac{1101850884633599886236254961932241200726324906704}{2370770751647005520703394125369730532841602640107} a^{10} - \frac{257575355828409872381623231875169189633437035685}{2370770751647005520703394125369730532841602640107} a^{8} + \frac{666847656031300479827870122559915452677889665900}{2370770751647005520703394125369730532841602640107} a^{6} + \frac{1156530004886609875544272045110978326318727941529}{2370770751647005520703394125369730532841602640107} a^{4} + \frac{82996793716329940400642353357975494258208574783}{2370770751647005520703394125369730532841602640107} a^{2} - \frac{157796150735127978184738046032777875457858967}{713442898479387758261629288404974581053747409}$, $\frac{1}{2370770751647005520703394125369730532841602640107} a^{27} + \frac{4726693261916643936734682150010128958065}{2370770751647005520703394125369730532841602640107} a^{25} + \frac{699059227501597599825298350174536845251326253661}{2370770751647005520703394125369730532841602640107} a^{23} + \frac{773095011761669936342438201071676151282776220983}{2370770751647005520703394125369730532841602640107} a^{21} - \frac{186243505950687065092921822314744458881884777004}{2370770751647005520703394125369730532841602640107} a^{19} + \frac{345414890320638971946591836838995847384843946389}{2370770751647005520703394125369730532841602640107} a^{17} - \frac{474541996502422332380204712873841619337832282078}{2370770751647005520703394125369730532841602640107} a^{15} - \frac{761957286316476627788791824353553687582099880884}{2370770751647005520703394125369730532841602640107} a^{13} + \frac{757784592342137301107095655285412624418542146553}{2370770751647005520703394125369730532841602640107} a^{11} + \frac{608773481911022110720645696497993754733875411188}{2370770751647005520703394125369730532841602640107} a^{9} + \frac{836391988673337106015811128838404963672424693274}{2370770751647005520703394125369730532841602640107} a^{7} - \frac{41250838687642863132480206063203890420914567075}{2370770751647005520703394125369730532841602640107} a^{5} + \frac{1027789935868891737641354875254913582149853672059}{2370770751647005520703394125369730532841602640107} a^{3} + \frac{694198420317682849454825368898001758544874658073}{2370770751647005520703394125369730532841602640107} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{516}$, which has order $16512$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 297452739458.56445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 29 | Data not computed | ||||||