Normalized defining polynomial
\( x^{28} + 261 x^{24} + 16298 x^{20} + 333123 x^{16} + 1428018 x^{12} + 819134 x^{8} + 51301 x^{4} + 841 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7586259643335085676646037106440640773336778620436217856=2^{56}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(232=2^{3}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{232}(1,·)$, $\chi_{232}(67,·)$, $\chi_{232}(5,·)$, $\chi_{232}(51,·)$, $\chi_{232}(7,·)$, $\chi_{232}(111,·)$, $\chi_{232}(13,·)$, $\chi_{232}(109,·)$, $\chi_{232}(115,·)$, $\chi_{232}(81,·)$, $\chi_{232}(149,·)$, $\chi_{232}(23,·)$, $\chi_{232}(25,·)$, $\chi_{232}(91,·)$, $\chi_{232}(93,·)$, $\chi_{232}(223,·)$, $\chi_{232}(161,·)$, $\chi_{232}(35,·)$, $\chi_{232}(65,·)$, $\chi_{232}(103,·)$, $\chi_{232}(169,·)$, $\chi_{232}(199,·)$, $\chi_{232}(173,·)$, $\chi_{232}(175,·)$, $\chi_{232}(49,·)$, $\chi_{232}(179,·)$, $\chi_{232}(187,·)$, $\chi_{232}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14}$, $\frac{1}{29} a^{15}$, $\frac{1}{493} a^{16} - \frac{7}{17}$, $\frac{1}{493} a^{17} - \frac{7}{17} a$, $\frac{1}{493} a^{18} - \frac{7}{17} a^{2}$, $\frac{1}{493} a^{19} - \frac{7}{17} a^{3}$, $\frac{1}{343621} a^{20} - \frac{202}{343621} a^{16} - \frac{183}{697} a^{12} - \frac{319}{697} a^{8} + \frac{1302}{11849} a^{4} + \frac{4015}{11849}$, $\frac{1}{343621} a^{21} - \frac{202}{343621} a^{17} - \frac{183}{697} a^{13} - \frac{319}{697} a^{9} + \frac{1302}{11849} a^{5} + \frac{4015}{11849} a$, $\frac{1}{343621} a^{22} - \frac{202}{343621} a^{18} + \frac{269}{20213} a^{14} - \frac{319}{697} a^{10} + \frac{1302}{11849} a^{6} + \frac{4015}{11849} a^{2}$, $\frac{1}{343621} a^{23} - \frac{202}{343621} a^{19} + \frac{269}{20213} a^{15} - \frac{319}{697} a^{11} + \frac{1302}{11849} a^{7} + \frac{4015}{11849} a^{3}$, $\frac{1}{23194036424311} a^{24} - \frac{2766032}{23194036424311} a^{20} + \frac{250687478}{23194036424311} a^{16} + \frac{21754533101}{47046727027} a^{12} - \frac{219037445122}{799794359459} a^{8} + \frac{177921994957}{799794359459} a^{4} + \frac{392035722031}{799794359459}$, $\frac{1}{23194036424311} a^{25} - \frac{2766032}{23194036424311} a^{21} + \frac{250687478}{23194036424311} a^{17} + \frac{21754533101}{47046727027} a^{13} - \frac{219037445122}{799794359459} a^{9} + \frac{177921994957}{799794359459} a^{5} + \frac{392035722031}{799794359459} a$, $\frac{1}{23194036424311} a^{26} - \frac{2766032}{23194036424311} a^{22} + \frac{250687478}{23194036424311} a^{18} + \frac{19274008578}{1364355083783} a^{14} - \frac{219037445122}{799794359459} a^{10} + \frac{177921994957}{799794359459} a^{6} + \frac{392035722031}{799794359459} a^{2}$, $\frac{1}{23194036424311} a^{27} - \frac{2766032}{23194036424311} a^{23} + \frac{250687478}{23194036424311} a^{19} + \frac{19274008578}{1364355083783} a^{15} - \frac{219037445122}{799794359459} a^{11} + \frac{177921994957}{799794359459} a^{7} + \frac{392035722031}{799794359459} a^{3}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{1204}$, which has order $38528$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{41243647}{393119261429} a^{26} - \frac{10765496237}{393119261429} a^{22} - \frac{672425181863}{393119261429} a^{18} - \frac{809058513268}{23124662437} a^{14} - \frac{2041413081834}{13555836601} a^{10} - \frac{1211760837578}{13555836601} a^{6} - \frac{112760781878}{13555836601} a^{2} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 306576699955.91235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |