# SageMath code for working with number field 28.0.650754790224967946962108515803180182241777.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^28 - 2*x^27 + 4*x^26 - 10*x^25 + 5*x^24 + 7*x^23 - 18*x^22 - 225*x^21 - 120*x^20 + 1331*x^19 - 2152*x^18 + 4025*x^17 + 6967*x^16 - 15748*x^15 + 11604*x^14 - 4171*x^13 - 26180*x^12 + 37520*x^11 - 9040*x^10 + 16909*x^9 - 40976*x^8 - 11561*x^7 + 79270*x^6 - 49005*x^5 + 81626*x^4 - 70530*x^3 + 35205*x^2 - 15236*x + 3229) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]