Normalized defining polynomial
\( x^{28} + 203 x^{26} + 18473 x^{24} + 994700 x^{22} + 35232274 x^{20} + 863190713 x^{18} + 14974482369 x^{16} + 185139054744 x^{14} + 1619966729010 x^{12} + 9827798155994 x^{10} + 39828445158502 x^{8} + 101381496767096 x^{6} + 146108627693756 x^{4} + 98342345563105 x^{2} + 19668469112621 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(555850988161784919111048015916462199222154398969836020432896=2^{28}\cdot 7^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(812=2^{2}\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{812}(1,·)$, $\chi_{812}(195,·)$, $\chi_{812}(645,·)$, $\chi_{812}(391,·)$, $\chi_{812}(363,·)$, $\chi_{812}(393,·)$, $\chi_{812}(729,·)$, $\chi_{812}(727,·)$, $\chi_{812}(141,·)$, $\chi_{812}(589,·)$, $\chi_{812}(251,·)$, $\chi_{812}(279,·)$, $\chi_{812}(281,·)$, $\chi_{812}(27,·)$, $\chi_{812}(477,·)$, $\chi_{812}(197,·)$, $\chi_{812}(673,·)$, $\chi_{812}(475,·)$, $\chi_{812}(503,·)$, $\chi_{812}(169,·)$, $\chi_{812}(225,·)$, $\chi_{812}(559,·)$, $\chi_{812}(307,·)$, $\chi_{812}(55,·)$, $\chi_{812}(57,·)$, $\chi_{812}(699,·)$, $\chi_{812}(701,·)$, $\chi_{812}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{2401} a^{8}$, $\frac{1}{2401} a^{9}$, $\frac{1}{16807} a^{10}$, $\frac{1}{16807} a^{11}$, $\frac{1}{117649} a^{12}$, $\frac{1}{117649} a^{13}$, $\frac{1}{823543} a^{14}$, $\frac{1}{823543} a^{15}$, $\frac{1}{5764801} a^{16}$, $\frac{1}{5764801} a^{17}$, $\frac{1}{40353607} a^{18}$, $\frac{1}{40353607} a^{19}$, $\frac{1}{282475249} a^{20}$, $\frac{1}{282475249} a^{21}$, $\frac{1}{1977326743} a^{22}$, $\frac{1}{1977326743} a^{23}$, $\frac{1}{13841287201} a^{24}$, $\frac{1}{13841287201} a^{25}$, $\frac{1}{96889010407} a^{26}$, $\frac{1}{96889010407} a^{27}$
Class group and class number
Not computed
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.19120976.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $28$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ | R | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||