Normalized defining polynomial
\( x^{28} - 24 x^{26} + 286 x^{24} - 2327 x^{22} + 12825 x^{20} - 40336 x^{18} + 39135 x^{16} + 152588 x^{14} - 531606 x^{12} + 381077 x^{10} + 2209555 x^{8} - 10321444 x^{6} + 18143914 x^{4} - 8922944 x^{2} + 1423325 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(537788304782666838980279974392697944146481853517\)\(\medspace = 19^{14}\cdot 197^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $50.66$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $19, 197$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{19} - \frac{1}{10} a^{17} - \frac{1}{5} a^{15} + \frac{3}{10} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{2}{5} a^{7} + \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{190} a^{20} + \frac{2}{95} a^{18} + \frac{1}{5} a^{16} - \frac{27}{190} a^{14} - \frac{5}{38} a^{12} - \frac{1}{2} a^{11} - \frac{3}{38} a^{10} - \frac{23}{95} a^{8} + \frac{33}{95} a^{6} - \frac{1}{2} a^{5} - \frac{13}{190} a^{4} - \frac{1}{2} a^{3} - \frac{63}{190} a^{2} - \frac{13}{38}$, $\frac{1}{190} a^{21} + \frac{2}{95} a^{19} + \frac{1}{5} a^{17} - \frac{27}{190} a^{15} - \frac{5}{38} a^{13} - \frac{1}{2} a^{12} - \frac{3}{38} a^{11} - \frac{23}{95} a^{9} + \frac{33}{95} a^{7} - \frac{1}{2} a^{6} - \frac{13}{190} a^{5} - \frac{1}{2} a^{4} - \frac{63}{190} a^{3} - \frac{13}{38} a$, $\frac{1}{190} a^{22} + \frac{11}{95} a^{18} + \frac{11}{190} a^{16} - \frac{6}{95} a^{14} - \frac{1}{2} a^{13} + \frac{17}{38} a^{12} - \frac{1}{2} a^{11} - \frac{81}{190} a^{10} - \frac{7}{38} a^{8} - \frac{1}{2} a^{7} - \frac{87}{190} a^{6} + \frac{42}{95} a^{4} - \frac{3}{190} a^{2} - \frac{5}{38}$, $\frac{1}{190} a^{23} + \frac{3}{190} a^{19} + \frac{3}{19} a^{17} + \frac{13}{95} a^{15} + \frac{14}{95} a^{13} - \frac{1}{2} a^{12} - \frac{81}{190} a^{11} - \frac{7}{38} a^{9} + \frac{27}{190} a^{7} - \frac{3}{19} a^{5} + \frac{27}{95} a^{3} - \frac{1}{2} a^{2} + \frac{16}{95} a$, $\frac{1}{334970} a^{24} - \frac{92}{167485} a^{22} - \frac{436}{167485} a^{20} + \frac{79787}{334970} a^{18} - \frac{37574}{167485} a^{16} - \frac{27872}{167485} a^{14} - \frac{1}{2} a^{13} + \frac{51242}{167485} a^{12} + \frac{76412}{167485} a^{10} + \frac{64541}{167485} a^{8} - \frac{143707}{334970} a^{6} - \frac{2536}{167485} a^{4} + \frac{39369}{334970} a^{2} - \frac{1}{2} a - \frac{6553}{66994}$, $\frac{1}{5694490} a^{25} + \frac{12157}{5694490} a^{23} - \frac{3962}{2847245} a^{21} + \frac{10804}{2847245} a^{19} - \frac{91081}{569449} a^{17} - \frac{917851}{5694490} a^{15} + \frac{42335}{569449} a^{13} + \frac{598863}{5694490} a^{11} - \frac{1}{2} a^{10} + \frac{261997}{2847245} a^{9} - \frac{1}{2} a^{8} + \frac{397986}{2847245} a^{7} - \frac{1}{2} a^{6} + \frac{98926}{569449} a^{5} - \frac{1}{2} a^{4} + \frac{1686011}{5694490} a^{3} - \frac{410413}{2847245} a - \frac{1}{2}$, $\frac{1}{253552965241621004964380111454148405250} a^{26} - \frac{340363725244844817005532862612233}{253552965241621004964380111454148405250} a^{24} - \frac{419613924332448198636226769125933117}{253552965241621004964380111454148405250} a^{22} + \frac{2633447384449397485594035049825188}{126776482620810502482190055727074202625} a^{20} + \frac{25056292054960139534428471592787307483}{126776482620810502482190055727074202625} a^{18} - \frac{4448161023512888831126016279933850238}{25355296524162100496438011145414840525} a^{16} + \frac{556354825217861600438421538064986578}{25355296524162100496438011145414840525} a^{14} - \frac{1}{2} a^{13} + \frac{55057370409198503764650882195858946484}{126776482620810502482190055727074202625} a^{12} + \frac{81017613544042945187289612317669711057}{253552965241621004964380111454148405250} a^{10} - \frac{1}{2} a^{9} - \frac{3109647191674111385461500038973138419}{13344892907453737103388426918639389750} a^{8} + \frac{100422110159481816919766471295153459429}{253552965241621004964380111454148405250} a^{6} - \frac{1}{2} a^{5} + \frac{2028070283834097855820065459792680809}{50710593048324200992876022290829681050} a^{4} - \frac{99679688775783833707458355095145573091}{253552965241621004964380111454148405250} a^{2} - \frac{1}{2} a - \frac{125224855574878995984347408367887469}{596595212333225894033835556362702130}$, $\frac{1}{253552965241621004964380111454148405250} a^{27} + \frac{15844420161147298129455677473567}{253552965241621004964380111454148405250} a^{25} - \frac{46329686433961592978349581447339721}{126776482620810502482190055727074202625} a^{23} - \frac{74173933968717652340387868906175437}{126776482620810502482190055727074202625} a^{21} + \frac{5764447376783381989478910577054961341}{253552965241621004964380111454148405250} a^{19} + \frac{8687527937591981959468663358214228579}{50710593048324200992876022290829681050} a^{17} - \frac{166151648801748138913528154618944471}{2668978581490747420677685383727877950} a^{15} + \frac{56738597691981591789856230981858659793}{253552965241621004964380111454148405250} a^{13} + \frac{871680250876026726912042986070662776}{3092109332214890304443659895782297625} a^{11} - \frac{1}{2} a^{10} + \frac{18139512460938671806489583600386059289}{253552965241621004964380111454148405250} a^{9} - \frac{1}{2} a^{8} + \frac{122393919088486925561580401918995817929}{253552965241621004964380111454148405250} a^{7} + \frac{1689009504045045811977883327148171752}{25355296524162100496438011145414840525} a^{5} - \frac{55819710891904097361064993601046909408}{126776482620810502482190055727074202625} a^{3} - \frac{2294776469627856106050399325367152049}{5071059304832420099287602229082968105} a$
Class group and class number
$C_{29}$, which has order $29$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 337496841957.8353 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{-19}) \), 4.0.71117.1, 7.1.52439613407.1, 14.0.52248348031236668805331.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $28$ | $28$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $28$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |