Normalized defining polynomial
\( x^{28} - 70 x^{26} - 84 x^{25} + 2422 x^{24} + 5068 x^{23} - 38626 x^{22} - 104408 x^{21} + \cdots + 18055489522361 \)
Invariants
| Degree: | $28$ |
| |
| Signature: | $[0, 14]$ |
| |
| Discriminant: |
\(48277178382311752679795381206864912282636228388454400000000000000\)
\(\medspace = 2^{42}\cdot 5^{14}\cdot 7^{50}\)
|
| |
| Root discriminant: | \(204.24\) |
| |
| Galois root discriminant: | $2^{3/2}5^{1/2}7^{25/14}\approx 204.23663129490222$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2\times C_{14}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1960=2^{3}\cdot 5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1960}(1,·)$, $\chi_{1960}(1861,·)$, $\chi_{1960}(769,·)$, $\chi_{1960}(841,·)$, $\chi_{1960}(209,·)$, $\chi_{1960}(461,·)$, $\chi_{1960}(1581,·)$, $\chi_{1960}(1681,·)$, $\chi_{1960}(1429,·)$, $\chi_{1960}(1049,·)$, $\chi_{1960}(281,·)$, $\chi_{1960}(29,·)$, $\chi_{1960}(589,·)$, $\chi_{1960}(741,·)$, $\chi_{1960}(1889,·)$, $\chi_{1960}(1301,·)$, $\chi_{1960}(869,·)$, $\chi_{1960}(1329,·)$, $\chi_{1960}(489,·)$, $\chi_{1960}(1709,·)$, $\chi_{1960}(1021,·)$, $\chi_{1960}(561,·)$, $\chi_{1960}(309,·)$, $\chi_{1960}(1609,·)$, $\chi_{1960}(1401,·)$, $\chi_{1960}(1121,·)$, $\chi_{1960}(1149,·)$, $\chi_{1960}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{8192}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{98}a^{14}+\frac{1}{7}a^{12}-\frac{3}{7}a^{11}+\frac{5}{14}a^{10}-\frac{1}{7}a^{9}-\frac{1}{14}a^{8}+\frac{15}{49}a^{7}+\frac{5}{14}a^{6}+\frac{1}{7}a^{5}+\frac{3}{7}a^{4}-\frac{3}{7}a^{3}-\frac{3}{7}a^{2}+\frac{1}{7}a-\frac{19}{98}$, $\frac{1}{98}a^{15}+\frac{1}{7}a^{13}-\frac{3}{7}a^{12}+\frac{5}{14}a^{11}-\frac{1}{7}a^{10}-\frac{1}{14}a^{9}+\frac{15}{49}a^{8}+\frac{5}{14}a^{7}+\frac{1}{7}a^{6}+\frac{3}{7}a^{5}-\frac{3}{7}a^{4}-\frac{3}{7}a^{3}+\frac{1}{7}a^{2}-\frac{19}{98}a$, $\frac{1}{98}a^{16}-\frac{3}{7}a^{13}+\frac{5}{14}a^{12}-\frac{1}{7}a^{11}-\frac{1}{14}a^{10}+\frac{15}{49}a^{9}+\frac{5}{14}a^{8}-\frac{1}{7}a^{7}+\frac{3}{7}a^{6}-\frac{3}{7}a^{5}-\frac{3}{7}a^{4}+\frac{1}{7}a^{3}-\frac{19}{98}a^{2}-\frac{2}{7}$, $\frac{1}{98}a^{17}+\frac{5}{14}a^{13}-\frac{1}{7}a^{12}-\frac{1}{14}a^{11}+\frac{15}{49}a^{10}+\frac{5}{14}a^{9}-\frac{1}{7}a^{8}+\frac{2}{7}a^{7}-\frac{3}{7}a^{6}-\frac{3}{7}a^{5}+\frac{1}{7}a^{4}-\frac{19}{98}a^{3}-\frac{2}{7}a-\frac{1}{7}$, $\frac{1}{98}a^{18}-\frac{1}{7}a^{13}-\frac{1}{14}a^{12}+\frac{15}{49}a^{11}-\frac{1}{7}a^{10}-\frac{1}{7}a^{9}-\frac{3}{14}a^{8}-\frac{1}{7}a^{7}+\frac{1}{14}a^{6}+\frac{1}{7}a^{5}-\frac{19}{98}a^{4}-\frac{2}{7}a^{2}-\frac{1}{7}a-\frac{3}{14}$, $\frac{1}{98}a^{19}-\frac{1}{14}a^{13}+\frac{15}{49}a^{12}-\frac{1}{7}a^{11}-\frac{1}{7}a^{10}-\frac{3}{14}a^{9}-\frac{1}{7}a^{8}+\frac{5}{14}a^{7}+\frac{1}{7}a^{6}-\frac{19}{98}a^{5}-\frac{2}{7}a^{3}-\frac{1}{7}a^{2}-\frac{3}{14}a+\frac{2}{7}$, $\frac{1}{98}a^{20}+\frac{15}{49}a^{13}-\frac{1}{7}a^{12}-\frac{1}{7}a^{11}+\frac{2}{7}a^{10}-\frac{1}{7}a^{9}-\frac{1}{7}a^{8}+\frac{2}{7}a^{7}+\frac{15}{49}a^{6}-\frac{2}{7}a^{4}-\frac{1}{7}a^{3}-\frac{3}{14}a^{2}+\frac{2}{7}a-\frac{5}{14}$, $\frac{1}{294}a^{21}-\frac{1}{294}a^{19}+\frac{13}{42}a^{13}-\frac{12}{49}a^{12}-\frac{5}{21}a^{11}+\frac{3}{7}a^{10}+\frac{5}{42}a^{9}-\frac{1}{7}a^{8}+\frac{25}{98}a^{7}+\frac{1}{21}a^{6}+\frac{61}{294}a^{5}+\frac{1}{3}a^{4}+\frac{13}{42}a^{3}-\frac{5}{21}a^{2}+\frac{4}{21}a+\frac{26}{147}$, $\frac{1}{173166}a^{22}-\frac{11}{24738}a^{21}+\frac{1}{4557}a^{20}-\frac{193}{173166}a^{19}+\frac{251}{57722}a^{18}+\frac{11}{28861}a^{17}-\frac{277}{57722}a^{16}+\frac{131}{28861}a^{15}-\frac{23}{9114}a^{14}+\frac{49531}{173166}a^{13}+\frac{3055}{86583}a^{12}-\frac{36662}{86583}a^{11}+\frac{23971}{86583}a^{10}-\frac{85921}{173166}a^{9}+\frac{25301}{57722}a^{8}-\frac{2125}{9114}a^{7}+\frac{4411}{28861}a^{6}-\frac{12633}{57722}a^{5}+\frac{11045}{28861}a^{4}+\frac{597}{57722}a^{3}-\frac{23602}{86583}a^{2}-\frac{1138}{4123}a+\frac{14312}{86583}$, $\frac{1}{173166}a^{23}-\frac{1}{173166}a^{21}-\frac{267}{57722}a^{20}-\frac{187}{57722}a^{19}-\frac{44}{28861}a^{18}+\frac{239}{57722}a^{17}+\frac{137}{57722}a^{16}+\frac{1}{24738}a^{15}-\frac{1}{8246}a^{14}+\frac{40807}{86583}a^{13}+\frac{16349}{57722}a^{12}-\frac{33059}{86583}a^{11}+\frac{3984}{28861}a^{10}+\frac{4989}{57722}a^{9}+\frac{3124}{12369}a^{8}+\frac{18173}{86583}a^{7}-\frac{27355}{173166}a^{6}+\frac{28559}{86583}a^{5}-\frac{18989}{86583}a^{4}-\frac{48301}{173166}a^{3}-\frac{1552}{4557}a^{2}+\frac{3961}{8246}a+\frac{4910}{28861}$, $\frac{1}{173166}a^{24}-\frac{289}{173166}a^{21}-\frac{523}{173166}a^{20}+\frac{103}{24738}a^{19}-\frac{99}{57722}a^{18}+\frac{159}{57722}a^{17}-\frac{412}{86583}a^{16}+\frac{255}{57722}a^{15}-\frac{5}{8246}a^{14}-\frac{4310}{86583}a^{13}+\frac{5311}{24738}a^{12}-\frac{22354}{86583}a^{11}+\frac{473}{1302}a^{10}+\frac{21671}{57722}a^{9}-\frac{11905}{86583}a^{8}+\frac{24446}{86583}a^{7}+\frac{9995}{57722}a^{6}-\frac{1145}{8246}a^{5}-\frac{7213}{86583}a^{4}+\frac{35314}{86583}a^{3}-\frac{9997}{57722}a^{2}+\frac{76493}{173166}a-\frac{41467}{173166}$, $\frac{1}{13680114}a^{25}-\frac{1}{6840057}a^{24}-\frac{2}{977151}a^{23}-\frac{2}{977151}a^{22}+\frac{1184}{6840057}a^{21}-\frac{6299}{4560038}a^{20}+\frac{244}{51429}a^{19}+\frac{22979}{4560038}a^{18}+\frac{46615}{13680114}a^{17}+\frac{103}{720006}a^{16}+\frac{10657}{6840057}a^{15}-\frac{1723}{13680114}a^{14}+\frac{733497}{4560038}a^{13}+\frac{399331}{977151}a^{12}-\frac{17491}{1954302}a^{11}+\frac{555916}{6840057}a^{10}+\frac{4240601}{13680114}a^{9}+\frac{1719323}{4560038}a^{8}+\frac{1552003}{4560038}a^{7}+\frac{2197702}{6840057}a^{6}-\frac{52987}{279186}a^{5}-\frac{4518145}{13680114}a^{4}+\frac{2835467}{13680114}a^{3}+\frac{66946}{360003}a^{2}+\frac{147886}{360003}a-\frac{5435699}{13680114}$, $\frac{1}{37\cdots 46}a^{26}-\frac{11\cdots 68}{62\cdots 41}a^{25}+\frac{35\cdots 99}{37\cdots 46}a^{24}-\frac{64\cdots 97}{28\cdots 62}a^{23}+\frac{73\cdots 93}{37\cdots 46}a^{22}+\frac{64\cdots 14}{62\cdots 41}a^{21}-\frac{25\cdots 32}{62\cdots 41}a^{20}-\frac{50\cdots 39}{37\cdots 46}a^{19}+\frac{74\cdots 23}{18\cdots 23}a^{18}-\frac{50\cdots 39}{12\cdots 82}a^{17}-\frac{43\cdots 03}{37\cdots 46}a^{16}+\frac{59\cdots 01}{18\cdots 23}a^{15}+\frac{26\cdots 28}{62\cdots 41}a^{14}-\frac{26\cdots 32}{62\cdots 41}a^{13}+\frac{18\cdots 43}{37\cdots 46}a^{12}+\frac{17\cdots 87}{12\cdots 82}a^{11}+\frac{93\cdots 25}{37\cdots 46}a^{10}+\frac{26\cdots 68}{18\cdots 23}a^{9}-\frac{88\cdots 11}{18\cdots 23}a^{8}+\frac{14\cdots 07}{37\cdots 46}a^{7}-\frac{48\cdots 34}{98\cdots 17}a^{6}+\frac{29\cdots 22}{18\cdots 23}a^{5}-\frac{14\cdots 28}{18\cdots 23}a^{4}+\frac{53\cdots 40}{26\cdots 89}a^{3}+\frac{12\cdots 03}{62\cdots 41}a^{2}-\frac{43\cdots 99}{12\cdots 66}a+\frac{71\cdots 35}{18\cdots 23}$, $\frac{1}{76\cdots 86}a^{27}-\frac{64\cdots 03}{25\cdots 62}a^{26}+\frac{25\cdots 30}{12\cdots 31}a^{25}-\frac{46\cdots 45}{25\cdots 62}a^{24}+\frac{91\cdots 71}{38\cdots 93}a^{23}+\frac{91\cdots 86}{38\cdots 93}a^{22}+\frac{79\cdots 11}{82\cdots 02}a^{21}-\frac{11\cdots 41}{76\cdots 86}a^{20}+\frac{20\cdots 93}{76\cdots 86}a^{19}-\frac{75\cdots 25}{51\cdots 38}a^{18}-\frac{31\cdots 45}{25\cdots 62}a^{17}+\frac{91\cdots 07}{25\cdots 62}a^{16}+\frac{46\cdots 71}{96\cdots 34}a^{15}-\frac{29\cdots 15}{10\cdots 98}a^{14}-\frac{25\cdots 06}{54\cdots 99}a^{13}+\frac{49\cdots 17}{12\cdots 31}a^{12}+\frac{14\cdots 19}{38\cdots 93}a^{11}+\frac{13\cdots 27}{38\cdots 93}a^{10}-\frac{11\cdots 31}{54\cdots 99}a^{9}-\frac{29\cdots 41}{38\cdots 93}a^{8}-\frac{41\cdots 49}{76\cdots 86}a^{7}-\frac{15\cdots 72}{38\cdots 93}a^{6}+\frac{23\cdots 33}{13\cdots 98}a^{5}+\frac{32\cdots 74}{12\cdots 31}a^{4}-\frac{12\cdots 20}{38\cdots 93}a^{3}-\frac{11\cdots 73}{38\cdots 93}a^{2}-\frac{95\cdots 83}{76\cdots 86}a+\frac{66\cdots 77}{25\cdots 62}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
| |
| Relative class number: | data not computed |
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot R \cdot h}{2\cdot\sqrt{48277178382311752679795381206864912282636228388454400000000000000}}\cr\mathstrut & \text{
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }^{4}$ | R | R | ${\href{/padicField/11.14.0.1}{14} }^{2}$ | ${\href{/padicField/13.7.0.1}{7} }^{4}$ | ${\href{/padicField/17.14.0.1}{14} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{14}$ | ${\href{/padicField/23.14.0.1}{14} }^{2}$ | ${\href{/padicField/29.14.0.1}{14} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{14}$ | ${\href{/padicField/37.14.0.1}{14} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }^{2}$ | ${\href{/padicField/47.14.0.1}{14} }^{2}$ | ${\href{/padicField/53.14.0.1}{14} }^{2}$ | ${\href{/padicField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| Deg $28$ | $2$ | $14$ | $42$ | |||
|
\(5\)
| 5.7.2.7a1.1 | $x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
| 5.7.2.7a1.1 | $x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ | |
|
\(7\)
| Deg $28$ | $14$ | $2$ | $50$ |