Normalized defining polynomial
\( x^{28} + 14 x^{24} + 406 x^{22} + 637 x^{20} + 1736 x^{18} + 25613 x^{16} + 45672 x^{14} + 146510 x^{12} + 216314 x^{10} + 175987 x^{8} + 135485 x^{6} + 138712 x^{4} + 36281 x^{2} + 6241 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(482771783823117526797953812068649122826362283884544=2^{28}\cdot 7^{50}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(196=2^{2}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{196}(1,·)$, $\chi_{196}(195,·)$, $\chi_{196}(69,·)$, $\chi_{196}(71,·)$, $\chi_{196}(139,·)$, $\chi_{196}(13,·)$, $\chi_{196}(15,·)$, $\chi_{196}(141,·)$, $\chi_{196}(83,·)$, $\chi_{196}(85,·)$, $\chi_{196}(153,·)$, $\chi_{196}(155,·)$, $\chi_{196}(29,·)$, $\chi_{196}(97,·)$, $\chi_{196}(27,·)$, $\chi_{196}(167,·)$, $\chi_{196}(41,·)$, $\chi_{196}(43,·)$, $\chi_{196}(125,·)$, $\chi_{196}(111,·)$, $\chi_{196}(99,·)$, $\chi_{196}(113,·)$, $\chi_{196}(181,·)$, $\chi_{196}(55,·)$, $\chi_{196}(57,·)$, $\chi_{196}(183,·)$, $\chi_{196}(169,·)$, $\chi_{196}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{91991} a^{24} + \frac{3060}{91991} a^{22} - \frac{34560}{91991} a^{20} + \frac{34418}{91991} a^{18} - \frac{19428}{91991} a^{16} + \frac{14963}{91991} a^{14} + \frac{32934}{91991} a^{12} + \frac{17885}{91991} a^{10} + \frac{35419}{91991} a^{8} + \frac{30248}{91991} a^{6} + \frac{24092}{91991} a^{4} + \frac{36749}{91991} a^{2} + \frac{37627}{91991}$, $\frac{1}{7267289} a^{25} - \frac{1008841}{7267289} a^{23} + \frac{2909152}{7267289} a^{21} - \frac{241555}{7267289} a^{19} - \frac{387392}{7267289} a^{17} - \frac{353001}{7267289} a^{15} - \frac{2174850}{7267289} a^{13} + \frac{3329561}{7267289} a^{11} - \frac{700509}{7267289} a^{9} - \frac{3189437}{7267289} a^{7} + \frac{760020}{7267289} a^{5} - \frac{1987053}{7267289} a^{3} - \frac{2906085}{7267289} a$, $\frac{1}{26634927568365291857549826889315883279} a^{26} + \frac{47001196400232933009111897385151}{26634927568365291857549826889315883279} a^{24} - \frac{7435606132843811697279887164238530644}{26634927568365291857549826889315883279} a^{22} + \frac{8532444037477742027388154485251021796}{26634927568365291857549826889315883279} a^{20} + \frac{11204774469908874811931812480723428561}{26634927568365291857549826889315883279} a^{18} + \frac{395429380637123973978516959203083011}{26634927568365291857549826889315883279} a^{16} + \frac{4171777298446071791722166468291812495}{26634927568365291857549826889315883279} a^{14} - \frac{1545733717954098413263144660185478097}{26634927568365291857549826889315883279} a^{12} + \frac{6433348929258755624731916218878392008}{26634927568365291857549826889315883279} a^{10} - \frac{4435286959587915413367783605040767415}{26634927568365291857549826889315883279} a^{8} + \frac{9127434553683963223575889495482528907}{26634927568365291857549826889315883279} a^{6} - \frac{10041516235186151286518638638539144288}{26634927568365291857549826889315883279} a^{4} + \frac{426064685386426805373844662418165096}{26634927568365291857549826889315883279} a^{2} + \frac{118971732640236254139819471009824805}{337150981878041669082909201130580801}$, $\frac{1}{26634927568365291857549826889315883279} a^{27} - \frac{644364191722168012486080837692}{26634927568365291857549826889315883279} a^{25} - \frac{12638666276425819342649614994559142239}{26634927568365291857549826889315883279} a^{23} + \frac{3098903992096835267953487388890279055}{26634927568365291857549826889315883279} a^{21} - \frac{3921129709666702618345914778973613853}{26634927568365291857549826889315883279} a^{19} - \frac{7781989178889497388612425950409204812}{26634927568365291857549826889315883279} a^{17} - \frac{5644219735398477450102552510382268941}{26634927568365291857549826889315883279} a^{15} - \frac{4463496538001714386640089279498912663}{26634927568365291857549826889315883279} a^{13} + \frac{7604113969339888657458091585146329759}{26634927568365291857549826889315883279} a^{11} + \frac{2305929476756668590620967632548876393}{26634927568365291857549826889315883279} a^{9} + \frac{1280382981215713615299319028716938624}{26634927568365291857549826889315883279} a^{7} + \frac{7016759940446716550146119731167485410}{26634927568365291857549826889315883279} a^{5} - \frac{11439391477148581274556135473210516341}{26634927568365291857549826889315883279} a^{3} - \frac{11948749578741247315902662582388440424}{26634927568365291857549826889315883279} a$
Class group and class number
$C_{71}$, which has order $71$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1694604370159091923560}{48166563384628033225653779} a^{27} + \frac{1303749658382307238053}{48166563384628033225653779} a^{25} + \frac{23091480306941228567945}{48166563384628033225653779} a^{23} + \frac{706348121813264898059271}{48166563384628033225653779} a^{21} + \frac{1599630340084744788309013}{48166563384628033225653779} a^{19} + \frac{3516446537302038602278212}{48166563384628033225653779} a^{17} + \frac{45295872275776396519772716}{48166563384628033225653779} a^{15} + \frac{1636185412934435323346617}{718903931113851242173937} a^{13} + \frac{291545865208818568790686328}{48166563384628033225653779} a^{11} + \frac{530706564397956963731430086}{48166563384628033225653779} a^{9} + \frac{484268213751188869019094535}{48166563384628033225653779} a^{7} + \frac{319918831668409030699320007}{48166563384628033225653779} a^{5} + \frac{300713830725918321539129708}{48166563384628033225653779} a^{3} + \frac{131750254101061389231655791}{48166563384628033225653779} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 983258026102.4221 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{7}) \), \(\Q(i, \sqrt{7})\), 7.7.13841287201.1, 14.0.1341068619663964900807.1, 14.0.3138866894939200133545984.1, 14.14.21972068264574400934821888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| 7 | Data not computed | ||||||