Normalized defining polynomial
\( x^{28} - 42 x^{26} + 1141 x^{24} - 17304 x^{22} + 185514 x^{20} - 1405327 x^{18} + 8063678 x^{16} - 34632564 x^{14} + 114161607 x^{12} - 277641777 x^{10} + 500991365 x^{8} - 607640670 x^{6} + 528315102 x^{4} - 270828656 x^{2} + 88529281 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47124132165319849265944537684819890333789452787530072064=2^{28}\cdot 3^{14}\cdot 7^{48}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(588=2^{2}\cdot 3\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{588}(1,·)$, $\chi_{588}(323,·)$, $\chi_{588}(197,·)$, $\chi_{588}(449,·)$, $\chi_{588}(463,·)$, $\chi_{588}(337,·)$, $\chi_{588}(211,·)$, $\chi_{588}(533,·)$, $\chi_{588}(407,·)$, $\chi_{588}(127,·)$, $\chi_{588}(281,·)$, $\chi_{588}(71,·)$, $\chi_{588}(155,·)$, $\chi_{588}(29,·)$, $\chi_{588}(491,·)$, $\chi_{588}(547,·)$, $\chi_{588}(421,·)$, $\chi_{588}(295,·)$, $\chi_{588}(169,·)$, $\chi_{588}(43,·)$, $\chi_{588}(365,·)$, $\chi_{588}(239,·)$, $\chi_{588}(113,·)$, $\chi_{588}(505,·)$, $\chi_{588}(379,·)$, $\chi_{588}(253,·)$, $\chi_{588}(85,·)$, $\chi_{588}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{5}{19} a^{14} + \frac{6}{19} a^{12} + \frac{8}{19} a^{10} - \frac{2}{19} a^{8} - \frac{9}{19} a^{6} + \frac{7}{19} a^{4} + \frac{3}{19} a^{2} + \frac{4}{19}$, $\frac{1}{19} a^{17} - \frac{5}{19} a^{15} + \frac{6}{19} a^{13} + \frac{8}{19} a^{11} - \frac{2}{19} a^{9} - \frac{9}{19} a^{7} + \frac{7}{19} a^{5} + \frac{3}{19} a^{3} + \frac{4}{19} a$, $\frac{1}{19} a^{18} + \frac{1}{19}$, $\frac{1}{19} a^{19} + \frac{1}{19} a$, $\frac{1}{589} a^{20} - \frac{1}{589} a^{18} - \frac{3}{589} a^{16} - \frac{118}{589} a^{14} - \frac{56}{589} a^{12} + \frac{280}{589} a^{10} - \frac{241}{589} a^{8} - \frac{11}{589} a^{6} + \frac{169}{589} a^{4} + \frac{277}{589} a^{2} + \frac{101}{589}$, $\frac{1}{589} a^{21} - \frac{1}{589} a^{19} - \frac{3}{589} a^{17} - \frac{118}{589} a^{15} - \frac{56}{589} a^{13} + \frac{280}{589} a^{11} - \frac{241}{589} a^{9} - \frac{11}{589} a^{7} + \frac{169}{589} a^{5} + \frac{277}{589} a^{3} + \frac{101}{589} a$, $\frac{1}{11191} a^{22} - \frac{8}{11191} a^{20} + \frac{4}{11191} a^{18} - \frac{128}{11191} a^{16} - \frac{253}{11191} a^{14} + \frac{486}{11191} a^{12} - \frac{79}{361} a^{10} - \frac{5330}{11191} a^{8} - \frac{1831}{11191} a^{6} + \frac{1822}{11191} a^{4} + \frac{4548}{11191} a^{2} - \frac{2598}{11191}$, $\frac{1}{1085527} a^{23} - \frac{26}{35017} a^{21} - \frac{965}{1085527} a^{19} + \frac{9334}{1085527} a^{17} - \frac{411451}{1085527} a^{15} - \frac{1946}{1085527} a^{13} + \frac{457351}{1085527} a^{11} - \frac{285979}{1085527} a^{9} - \frac{23092}{1085527} a^{7} - \frac{464058}{1085527} a^{5} + \frac{62099}{1085527} a^{3} + \frac{334994}{1085527} a$, $\frac{1}{85756633} a^{24} + \frac{1231}{85756633} a^{22} + \frac{61988}{85756633} a^{20} - \frac{461698}{85756633} a^{18} - \frac{738535}{85756633} a^{16} + \frac{40294085}{85756633} a^{14} + \frac{37116755}{85756633} a^{12} + \frac{8516577}{85756633} a^{10} - \frac{37920798}{85756633} a^{8} - \frac{34831837}{85756633} a^{6} + \frac{31392711}{85756633} a^{4} + \frac{26637805}{85756633} a^{2} + \frac{400207}{884089}$, $\frac{1}{85756633} a^{25} - \frac{33}{85756633} a^{23} + \frac{61593}{85756633} a^{21} + \frac{93539}{4513507} a^{19} - \frac{452160}{85756633} a^{17} + \frac{35199770}{85756633} a^{15} - \frac{20700659}{85756633} a^{13} - \frac{10919398}{85756633} a^{11} + \frac{36584971}{85756633} a^{9} + \frac{10080927}{85756633} a^{7} - \frac{296312}{4513507} a^{5} + \frac{35939660}{85756633} a^{3} - \frac{22658195}{85756633} a$, $\frac{1}{35250318844011541583942685906411054825733} a^{26} - \frac{28200797211225457182037715603174}{35250318844011541583942685906411054825733} a^{24} - \frac{1140849516045863661674908354703668972}{35250318844011541583942685906411054825733} a^{22} + \frac{22208829950960441605121362864031230965}{35250318844011541583942685906411054825733} a^{20} - \frac{190662409898838612833557284111379089194}{35250318844011541583942685906411054825733} a^{18} - \frac{332016700550464291341562345119317820131}{35250318844011541583942685906411054825733} a^{16} - \frac{2588179646282983680083043796426676410047}{35250318844011541583942685906411054825733} a^{14} - \frac{14233175168879475589134638391000591240760}{35250318844011541583942685906411054825733} a^{12} + \frac{12675283670401564752556320897404280882658}{35250318844011541583942685906411054825733} a^{10} + \frac{9786057661042802397893456468514256424530}{35250318844011541583942685906411054825733} a^{8} + \frac{11760870878343908113748208665678516081307}{35250318844011541583942685906411054825733} a^{6} + \frac{15229237615356784040336218865847767598416}{35250318844011541583942685906411054825733} a^{4} + \frac{3833644202488757269142871495561890280556}{35250318844011541583942685906411054825733} a^{2} + \frac{764207001672853762081960125698085583}{3746446895951912167493111479053146437}$, $\frac{1}{3419280927869119533642440532921872318096101} a^{27} - \frac{6193960391109613745807365258443689}{3419280927869119533642440532921872318096101} a^{25} + \frac{718743577473890246174490432217030352}{3419280927869119533642440532921872318096101} a^{23} - \frac{76504981147352754895770131096845414185}{3419280927869119533642440532921872318096101} a^{21} + \frac{6045328474179169064206300006283445558264}{3419280927869119533642440532921872318096101} a^{19} + \frac{66869596788503560391740411664071734373701}{3419280927869119533642440532921872318096101} a^{17} - \frac{1501726740884060814627886272854816461098365}{3419280927869119533642440532921872318096101} a^{15} + \frac{624510773576716157233021837861916870755609}{3419280927869119533642440532921872318096101} a^{13} - \frac{1029219820619452932666456367801622852108323}{3419280927869119533642440532921872318096101} a^{11} - \frac{1609443791993271316647940335275350552982007}{3419280927869119533642440532921872318096101} a^{9} + \frac{1453876755635404837907687076707550018910312}{3419280927869119533642440532921872318096101} a^{7} + \frac{530367366060867935846065272639605938125147}{3419280927869119533642440532921872318096101} a^{5} + \frac{1692603367264980408077144771997026958428621}{3419280927869119533642440532921872318096101} a^{3} + \frac{180653357815721229206706743157653607463}{363405348907335480246831813468155204389} a$
Class group and class number
$C_{14413}$, which has order $14413$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{19515167931632417211280112536418}{363405348907335480246831813468155204389} a^{27} - \frac{818862349177277708667083611866499}{363405348907335480246831813468155204389} a^{25} + \frac{22179378031795726660757159278556018}{363405348907335480246831813468155204389} a^{23} - \frac{334470832234416874032568530767423102}{363405348907335480246831813468155204389} a^{21} + \frac{3544099691572607419621554318020922356}{363405348907335480246831813468155204389} a^{19} - \frac{26338435134744256301290713254082195580}{363405348907335480246831813468155204389} a^{17} + \frac{146633443151068985988891386836299339630}{363405348907335480246831813468155204389} a^{15} - \frac{601152864970126829554122350998861297817}{363405348907335480246831813468155204389} a^{13} + \frac{1850165976862832005062879722090511973954}{363405348907335480246831813468155204389} a^{11} - \frac{4026510355365017148529329530367867920340}{363405348907335480246831813468155204389} a^{9} + \frac{6117215841455201664390683495742175632186}{363405348907335480246831813468155204389} a^{7} - \frac{5193184202491327687402342144147979018530}{363405348907335480246831813468155204389} a^{5} + \frac{28843197688330914379229185696003464528}{3746446895951912167493111479053146437} a^{3} - \frac{246640213453304031148697233697742735128}{363405348907335480246831813468155204389} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5301892196902.783 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ | |