Normalized defining polynomial
\( x^{28} - 12 x^{27} + 81 x^{26} - 388 x^{25} + 1591 x^{24} - 5878 x^{23} + 20190 x^{22} - 63303 x^{21} + 186224 x^{20} - 511845 x^{19} + 1342595 x^{18} - 3302776 x^{17} + 7789506 x^{16} - 17272242 x^{15} + 36946487 x^{14} - 74021368 x^{13} + 143721798 x^{12} - 259144734 x^{11} + 455881295 x^{10} - 732077019 x^{9} + 1159745156 x^{8} - 1624224783 x^{7} + 2293844933 x^{6} - 2689454001 x^{5} + 3335457433 x^{4} - 2996413671 x^{3} + 3196869115 x^{2} - 1711780865 x + 1532409301 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39980252956536233141313409161989698787991996663947761=11^{14}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(319=11\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{319}(1,·)$, $\chi_{319}(67,·)$, $\chi_{319}(197,·)$, $\chi_{319}(65,·)$, $\chi_{319}(265,·)$, $\chi_{319}(111,·)$, $\chi_{319}(78,·)$, $\chi_{319}(109,·)$, $\chi_{319}(144,·)$, $\chi_{319}(274,·)$, $\chi_{319}(23,·)$, $\chi_{319}(219,·)$, $\chi_{319}(285,·)$, $\chi_{319}(208,·)$, $\chi_{319}(34,·)$, $\chi_{319}(100,·)$, $\chi_{319}(296,·)$, $\chi_{319}(199,·)$, $\chi_{319}(45,·)$, $\chi_{319}(210,·)$, $\chi_{319}(175,·)$, $\chi_{319}(241,·)$, $\chi_{319}(254,·)$, $\chi_{319}(54,·)$, $\chi_{319}(120,·)$, $\chi_{319}(122,·)$, $\chi_{319}(252,·)$, $\chi_{319}(318,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{17} a^{24} + \frac{4}{17} a^{22} + \frac{4}{17} a^{21} - \frac{1}{17} a^{20} + \frac{6}{17} a^{19} - \frac{1}{17} a^{18} - \frac{4}{17} a^{17} - \frac{3}{17} a^{16} + \frac{2}{17} a^{15} - \frac{7}{17} a^{14} - \frac{4}{17} a^{13} - \frac{6}{17} a^{12} + \frac{5}{17} a^{11} + \frac{4}{17} a^{9} - \frac{8}{17} a^{8} - \frac{7}{17} a^{7} + \frac{6}{17} a^{5} - \frac{5}{17} a^{4} + \frac{8}{17} a^{3} - \frac{7}{17} a^{2} - \frac{4}{17}$, $\frac{1}{1003} a^{25} - \frac{5}{1003} a^{24} + \frac{208}{1003} a^{23} + \frac{494}{1003} a^{22} + \frac{336}{1003} a^{21} + \frac{215}{1003} a^{20} - \frac{337}{1003} a^{19} - \frac{152}{1003} a^{18} - \frac{7}{59} a^{17} + \frac{18}{59} a^{16} - \frac{9}{59} a^{15} - \frac{71}{1003} a^{14} + \frac{6}{17} a^{13} + \frac{188}{1003} a^{12} - \frac{416}{1003} a^{11} + \frac{259}{1003} a^{10} + \frac{482}{1003} a^{9} + \frac{101}{1003} a^{8} + \frac{239}{1003} a^{7} - \frac{436}{1003} a^{6} - \frac{409}{1003} a^{5} + \frac{101}{1003} a^{4} + \frac{38}{1003} a^{3} - \frac{135}{1003} a^{2} - \frac{463}{1003} a - \frac{6}{17}$, $\frac{1}{1003} a^{26} + \frac{6}{1003} a^{24} - \frac{8}{17} a^{23} + \frac{92}{1003} a^{22} + \frac{184}{1003} a^{21} - \frac{88}{1003} a^{20} + \frac{110}{1003} a^{19} + \frac{301}{1003} a^{18} + \frac{419}{1003} a^{17} - \frac{98}{1003} a^{16} - \frac{11}{59} a^{15} + \frac{235}{1003} a^{14} - \frac{343}{1003} a^{13} - \frac{420}{1003} a^{12} + \frac{303}{1003} a^{11} - \frac{229}{1003} a^{10} - \frac{203}{1003} a^{9} + \frac{154}{1003} a^{8} - \frac{8}{1003} a^{7} + \frac{420}{1003} a^{6} + \frac{3}{1003} a^{5} + \frac{25}{59} a^{4} - \frac{358}{1003} a^{3} + \frac{101}{1003} a^{2} + \frac{20}{59} a - \frac{1}{17}$, $\frac{1}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{27} - \frac{84587041098555302956687893200287940976462877920655685896844795800769147416387069349287657110116}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{26} - \frac{6910448814951081615979182297263743281463784922071214503528779419569020645759000825706469459054}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{25} - \frac{286764899650504768645055637742054793479963943383565722517223394781922210636601590139821247543647}{30786228841863788806595111381652411775871151314377953529752707614883969374733756250114729043571411} a^{24} - \frac{149397931507585858221719833119500703928872043399701942970353068524242210249971296616954528525156466}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{23} - \frac{55227938254264477125689986920010783023295878049906183181517364632537573418267794394537413211813046}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{22} - \frac{63356263648390109534712530755565262891712222762839242164956802111992011549672215398733813826484345}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{21} + \frac{220586606469662017537271782181837923103766145845056222365914293937608509667312065772452456643421876}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{20} - \frac{78551171933254220561918652794934004284764403759031144702456167862476782831082849792480471295816186}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{19} - \frac{195779603008650091809658663401201435967247248597308725639566723560843247800747065028956664486207555}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{18} + \frac{195246806636784743752306072691195725386451655454187362496431904003965946469573321302747270763556909}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{17} + \frac{165852076993790121262523547962612494332374116358117074877348206414093543504194156586887540491896263}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{16} - \frac{246255659025596239016821255916314765514238983123160117996120658071532943002612790782396640970084558}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{15} + \frac{58079198858919603784947068708884903984488186021870681300643843380004046068351067772724241918862331}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{14} - \frac{34444087943151854969958042038094814845824079095443281293827700250287815790768569434657388567280043}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{13} + \frac{3783631579385743681359365355022756790667994646300038893306927289184640808282265846432747939224764}{30786228841863788806595111381652411775871151314377953529752707614883969374733756250114729043571411} a^{12} - \frac{147385735625913644795823445443573269004848483244706231346219930254915406789259712969563704599864008}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{11} + \frac{205168259594341023708608060081960244103240951044984479866449968836321760645527847466674227052825867}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{10} - \frac{138029915501566477487729858103402414658798060632647401950635562431419247413621437717486451070220292}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{9} - \frac{8186544958159204379940425003330103168492638542355645101618322513981861585022901371527492343942541}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{8} + \frac{160289298689139185590582074538962470645747858928679372699323947860879497401676367322832115064560701}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{7} - \frac{57253263173670540913868467400502676999691127138660954965623683693208637819844412367625219721845749}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{6} - \frac{2718370491601366815454234591857290025258252205053506740400998828966830223069712729973583825361310}{8870608310367532368001981245560864409996772412617376440776203889034364057126675529694074470181593} a^{5} + \frac{118666373611306264173157650926219172727342621571109153976049913668144417293267383302569700980383528}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{4} + \frac{153049157604213338721438359785551656146612849264970773217419950310451174333426311034953280856808211}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{3} + \frac{204595263160113440020313727697678046134513070252500305951985372473386729039720079071534647737115707}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a^{2} - \frac{208112871518097832538532643329226596506018317939498623818619518604789733495247595575028151336484430}{523365890311684409712116893488091000189809572344425210005796029453027479370473856251950393740713987} a - \frac{580344579654858732898697470820252817472410836169287543098085388283288993784429415621601651048613}{8870608310367532368001981245560864409996772412617376440776203889034364057126675529694074470181593}$
Class group and class number
$C_{16}\times C_{16}\times C_{3440}$, which has order $880640$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 487075979.1876791 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 29 | Data not computed | ||||||