// Magma code for working with number field 28.0.3654513548980364725264702136425345220781793212890625.1. // Some of these functions may take a long time to execute (this depends on the field). // Define the number field: R := PolynomialRing(Rationals()); K := NumberField(x^28 - 5*x^27 + 47*x^26 - 152*x^25 + 1049*x^24 - 3001*x^23 + 14492*x^22 - 30908*x^21 + 115818*x^20 - 204097*x^19 + 649914*x^18 - 933216*x^17 + 2508376*x^16 - 2978786*x^15 + 7071411*x^14 - 6804920*x^13 + 13577493*x^12 - 10099944*x^11 + 17701828*x^10 - 9450995*x^9 + 11808392*x^8 - 1974799*x^7 + 3396106*x^6 - 287718*x^5 + 726277*x^4 + 16080*x^3 + 60245*x^2 - 6888*x + 1681); // Defining polynomial: DefiningPolynomial(K); // Degree over Q: Degree(K); // Signature: Signature(K); // Discriminant: OK := Integers(K); Discriminant(OK); // Ramified primes: PrimeDivisors(Discriminant(OK)); // Autmorphisms: Automorphisms(K); // Integral basis: IntegralBasis(K); // Class group: ClassGroup(K); // Unit group: UK, fUK := UnitGroup(K); // Unit rank: UnitRank(K); // Generator for roots of unity: K!f(TU.1) where TU,f is TorsionUnitGroup(K); // Fundamental units: [K|fUK(g): g in Generators(UK)]; // Regulator: Regulator(K); // Analytic class number formula: /* self-contained Magma code snippet to compute the analytic class number formula */ Qx := PolynomialRing(Rationals()); K := NumberField(x^28 - 5*x^27 + 47*x^26 - 152*x^25 + 1049*x^24 - 3001*x^23 + 14492*x^22 - 30908*x^21 + 115818*x^20 - 204097*x^19 + 649914*x^18 - 933216*x^17 + 2508376*x^16 - 2978786*x^15 + 7071411*x^14 - 6804920*x^13 + 13577493*x^12 - 10099944*x^11 + 17701828*x^10 - 9450995*x^9 + 11808392*x^8 - 1974799*x^7 + 3396106*x^6 - 287718*x^5 + 726277*x^4 + 16080*x^3 + 60245*x^2 - 6888*x + 1681); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK))); // Intermediate fields: L := Subfields(K); L[2..#L]; // Galois group: G = GaloisGroup(K); // Frobenius cycle types: // to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [ : pr in Factorization(p*Integers(K))];