Normalized defining polynomial
\( x^{28} - 3 x^{27} - 34 x^{26} + 144 x^{25} + 434 x^{24} - 2347 x^{23} - 1826 x^{22} + 20510 x^{21} - 1765 x^{20} - 109438 x^{19} + 155561 x^{18} + 274375 x^{17} - 755172 x^{16} + 932048 x^{15} - 239571 x^{14} - 6022955 x^{13} + 13616855 x^{12} - 2683804 x^{11} - 29709892 x^{10} + 50763183 x^{9} - 10828500 x^{8} + 60669907 x^{7} + 337407873 x^{6} - 138342771 x^{5} - 258957409 x^{4} - 71603500 x^{3} + 372018822 x^{2} + 287060780 x + 118082201 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30928748566898619200779449873164521915364034557154874272253=13^{21}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(377=13\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{377}(320,·)$, $\chi_{377}(1,·)$, $\chi_{377}(194,·)$, $\chi_{377}(326,·)$, $\chi_{377}(343,·)$, $\chi_{377}(268,·)$, $\chi_{377}(83,·)$, $\chi_{377}(25,·)$, $\chi_{377}(281,·)$, $\chi_{377}(285,·)$, $\chi_{377}(161,·)$, $\chi_{377}(226,·)$, $\chi_{377}(291,·)$, $\chi_{377}(103,·)$, $\chi_{377}(168,·)$, $\chi_{377}(233,·)$, $\chi_{377}(170,·)$, $\chi_{377}(239,·)$, $\chi_{377}(112,·)$, $\chi_{377}(339,·)$, $\chi_{377}(372,·)$, $\chi_{377}(53,·)$, $\chi_{377}(248,·)$, $\chi_{377}(313,·)$, $\chi_{377}(255,·)$, $\chi_{377}(252,·)$, $\chi_{377}(190,·)$, $\chi_{377}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3} a^{21} - \frac{1}{3} a^{19} - \frac{1}{3} a^{15} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{22} - \frac{1}{3} a^{20} - \frac{1}{3} a^{16} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{23} - \frac{1}{3} a^{19} - \frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{51} a^{24} + \frac{1}{17} a^{23} + \frac{5}{51} a^{22} + \frac{4}{51} a^{21} + \frac{5}{17} a^{20} + \frac{5}{51} a^{19} + \frac{8}{51} a^{18} + \frac{8}{17} a^{17} + \frac{7}{17} a^{16} + \frac{5}{51} a^{15} + \frac{25}{51} a^{14} + \frac{6}{17} a^{13} - \frac{11}{51} a^{12} + \frac{25}{51} a^{11} - \frac{14}{51} a^{10} - \frac{5}{17} a^{9} - \frac{25}{51} a^{8} - \frac{7}{17} a^{7} + \frac{4}{51} a^{6} + \frac{25}{51} a^{5} - \frac{1}{51} a^{4} + \frac{4}{51} a^{3} + \frac{1}{3} a^{2} - \frac{2}{17} a - \frac{10}{51}$, $\frac{1}{51} a^{25} - \frac{4}{51} a^{23} + \frac{2}{17} a^{22} + \frac{1}{17} a^{21} - \frac{2}{17} a^{20} - \frac{7}{51} a^{19} - \frac{8}{17} a^{16} + \frac{10}{51} a^{15} - \frac{2}{17} a^{14} - \frac{14}{51} a^{13} + \frac{8}{17} a^{12} + \frac{13}{51} a^{11} - \frac{7}{51} a^{10} + \frac{20}{51} a^{9} + \frac{20}{51} a^{8} - \frac{1}{51} a^{7} - \frac{4}{51} a^{6} + \frac{3}{17} a^{5} - \frac{10}{51} a^{4} - \frac{4}{17} a^{3} - \frac{2}{17} a^{2} - \frac{3}{17} a - \frac{7}{17}$, $\frac{1}{9741} a^{26} - \frac{88}{9741} a^{25} + \frac{4}{573} a^{24} + \frac{149}{9741} a^{23} - \frac{1100}{9741} a^{22} + \frac{40}{3247} a^{21} + \frac{1363}{9741} a^{20} + \frac{1300}{3247} a^{19} + \frac{498}{3247} a^{18} + \frac{4373}{9741} a^{17} + \frac{1319}{3247} a^{16} - \frac{3416}{9741} a^{15} - \frac{1460}{9741} a^{14} + \frac{1321}{3247} a^{13} + \frac{1784}{9741} a^{12} + \frac{919}{3247} a^{11} + \frac{3946}{9741} a^{10} - \frac{3925}{9741} a^{9} + \frac{598}{3247} a^{8} - \frac{29}{573} a^{7} - \frac{4859}{9741} a^{6} - \frac{838}{9741} a^{5} - \frac{3233}{9741} a^{4} - \frac{1994}{9741} a^{3} + \frac{1267}{9741} a^{2} + \frac{4487}{9741} a + \frac{2420}{9741}$, $\frac{1}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{27} + \frac{285547730201556799754820048681483382670168867631097447015516629918757410116645631582104851204058509975308195159921766221}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{26} + \frac{115114864804783077974171578191113289354006169587543679253599591746757767386985264441170212991235826019151980165845510362352}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{25} - \frac{394624714387628810343556049396933624409165396802458484881906268703750264665618972779604792789292825874785875447750242444080}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{24} + \frac{2745818774512725560571766025478789928927411366423442790362884351791658024985705914495787430215520937998071293769656944099077}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{23} - \frac{102687841051440593122933436809067983543703766934267345566185835383367783330885508223292647500912954214357694755136253628438}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{22} - \frac{6414621886718377529044920292256583084198620469718256394038415103250948039955457090370241891425163078746572647465320905652339}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{21} + \frac{9222996305121262966024275719173939688440877545441300564433247950020288179019019425123485219582917798000749234477831535331385}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{20} - \frac{226338539714295739610473879858962185412563282820644955973976599140244426892881161650018232658539903219577303308369773000819}{3666194222395525417934330354066209407723592720729655100735633186395385700598739942506446099475264199958972120639030642420623} a^{19} + \frac{17799028372883537068410535695472670290234890387421246237594191779961158734688798948302204921484665117308724636235732563805489}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{18} - \frac{215677325565214038483752324016397002037979798672284293810960567632486786043741596069726503437019185118337722692208067232817}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{17} - \frac{16049030527637229505548406001996151040031828329254343452960386750818211704241169132536379692470718203145098870979710602152165}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{16} + \frac{21472683681227295669515022288925379196131033993681059414037588116765529992871109543524058415525781473100367662711919316489046}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{15} + \frac{14035987944991433320205218340090354126261985415675711819015208756678411084810700724757396745770734078432566104977508872911001}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{14} + \frac{6508058808156658112005765630736824934681596914044541028291892642909473159623742965603309127227962938350445784004131147917629}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{13} - \frac{14541424099053445014767159321682838608029175478345842428381830922585235983970090726326400226357676615162106321763916613886741}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{12} + \frac{8792026578678916296680849049133324184126625432685794984282574737068411881066759857617443977278181773968607301082306761616546}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{11} + \frac{11213916264523184551760601554488576317547703618771118754814730855870855866043190013740255827960564260397444115531206263893663}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{10} - \frac{13657466273072011599396280757739545771473352233377095462183760075982418387847475996711448069999055978437683536623195187162269}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{9} + \frac{5265867777141046351314143528442639392981725202761523091329493025442965227183556698597921659408314877950216967953323987316630}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{8} + \frac{14607748393441145803805420703285277040820572990190753449569232326062122059066913695216216145911308826189360134542966617198330}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{7} + \frac{5062316417881038943482404505323324147773141225188868300931594393983254316107400960282059726755978768082184930972280475715484}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{6} - \frac{27885606504538029389285776427287048448485832855694706468021055848117421555105357083476315972786366409518810885843894309179614}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{5} - \frac{26643658961868999191031524962182124668156582432553165065252206542748307855917168432341161313853554349057635294864102192049275}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{4} + \frac{1976839213200117699338498105594364992275645008706854701077758420759297661297159473285138201277127877738962444481889223384042}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197} a^{3} + \frac{17648021385864394065660079844020912352349291200107427799685969772010153641118344461099364724685253965850759368791547377049853}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a^{2} - \frac{31069731036521352433866473821422030662407516743605910271090076294886654261448360338136142314674611663146036003533405773153804}{62325301780723932104883616019125559931301076252404136712505764168721556910178579022609583691079491399302526050863520921150591} a - \frac{1127898207366143360965824160636891948250781618738150271821585883613386305781782107050891170189305538623608865854199375567304}{20775100593574644034961205339708519977100358750801378904168588056240518970059526340869861230359830466434175350287840307050197}$
Class group and class number
$C_{2}\times C_{14}\times C_{9422}$, which has order $263816$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1523489837639.8035 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 7.7.594823321.1, 14.14.22201352938819688612162197.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{4}$ | $28$ | $28$ | $28$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |