Properties

Label 28.0.287...000.1
Degree $28$
Signature $[0, 14]$
Discriminant $2.876\times 10^{65}$
Root discriminant \(217.68\)
Ramified primes $2,3,5,7$
Class number not computed
Class group not computed
Galois group $C_2\times C_{14}$ (as 28T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629)
 
Copy content gp:K = bnfinit(y^28 - 14*y^27 + 231*y^26 - 2184*y^25 + 20125*y^24 - 140490*y^23 + 910749*y^22 - 4916494*y^21 + 24241980*y^20 - 103637310*y^19 + 401431380*y^18 - 1372183008*y^17 + 4220907614*y^16 - 11519186798*y^15 + 28049074701*y^14 - 60387086942*y^13 + 114593636066*y^12 - 190063611654*y^11 + 273107375450*y^10 - 336318155446*y^9 + 350769502895*y^8 - 305750098314*y^7 + 219150719501*y^6 - 126486255056*y^5 + 57086738898*y^4 - 19291033328*y^3 + 4559678865*y^2 - 667931418*y + 45398629, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629)
 

\( x^{28} - 14 x^{27} + 231 x^{26} - 2184 x^{25} + 20125 x^{24} - 140490 x^{23} + 910749 x^{22} + \cdots + 45398629 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $28$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 14]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(287622876985594783117337266142699525963070390548889600000000000000\) \(\medspace = 2^{28}\cdot 3^{14}\cdot 5^{14}\cdot 7^{48}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(217.68\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{1/2}7^{12/7}\approx 217.67829262168013$
Ramified primes:   \(2\), \(3\), \(5\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_2\times C_{14}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2940=2^{2}\cdot 3\cdot 5\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{2940}(1,·)$, $\chi_{2940}(1891,·)$, $\chi_{2940}(2129,·)$, $\chi_{2940}(2311,·)$, $\chi_{2940}(1289,·)$, $\chi_{2940}(2549,·)$, $\chi_{2940}(1261,·)$, $\chi_{2940}(1681,·)$, $\chi_{2940}(659,·)$, $\chi_{2940}(2521,·)$, $\chi_{2940}(1051,·)$, $\chi_{2940}(29,·)$, $\chi_{2940}(1499,·)$, $\chi_{2940}(869,·)$, $\chi_{2940}(2339,·)$, $\chi_{2940}(421,·)$, $\chi_{2940}(841,·)$, $\chi_{2940}(2731,·)$, $\chi_{2940}(1709,·)$, $\chi_{2940}(2759,·)$, $\chi_{2940}(239,·)$, $\chi_{2940}(449,·)$, $\chi_{2940}(211,·)$, $\chi_{2940}(2101,·)$, $\chi_{2940}(1079,·)$, $\chi_{2940}(631,·)$, $\chi_{2940}(1919,·)$, $\chi_{2940}(1471,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{8192}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{19}a^{20}+\frac{9}{19}a^{19}+\frac{8}{19}a^{18}+\frac{4}{19}a^{17}+\frac{5}{19}a^{16}-\frac{4}{19}a^{15}+\frac{1}{19}a^{13}+\frac{6}{19}a^{12}+\frac{9}{19}a^{11}+\frac{9}{19}a^{10}-\frac{2}{19}a^{9}-\frac{5}{19}a^{8}+\frac{6}{19}a^{7}-\frac{6}{19}a^{6}+\frac{6}{19}a^{5}-\frac{5}{19}a^{4}-\frac{1}{19}a^{3}+\frac{8}{19}a^{2}+\frac{8}{19}a-\frac{1}{19}$, $\frac{1}{19}a^{21}+\frac{3}{19}a^{19}+\frac{8}{19}a^{18}+\frac{7}{19}a^{17}+\frac{8}{19}a^{16}-\frac{2}{19}a^{15}+\frac{1}{19}a^{14}-\frac{3}{19}a^{13}-\frac{7}{19}a^{12}+\frac{4}{19}a^{11}-\frac{7}{19}a^{10}-\frac{6}{19}a^{9}-\frac{6}{19}a^{8}-\frac{3}{19}a^{7}+\frac{3}{19}a^{6}-\frac{2}{19}a^{5}+\frac{6}{19}a^{4}-\frac{2}{19}a^{3}-\frac{7}{19}a^{2}+\frac{3}{19}a+\frac{9}{19}$, $\frac{1}{19}a^{22}+\frac{2}{19}a^{18}-\frac{4}{19}a^{17}+\frac{2}{19}a^{16}-\frac{6}{19}a^{15}-\frac{3}{19}a^{14}+\frac{9}{19}a^{13}+\frac{5}{19}a^{12}+\frac{4}{19}a^{11}+\frac{5}{19}a^{10}-\frac{7}{19}a^{8}+\frac{4}{19}a^{7}-\frac{3}{19}a^{6}+\frac{7}{19}a^{5}-\frac{6}{19}a^{4}-\frac{4}{19}a^{3}-\frac{2}{19}a^{2}+\frac{4}{19}a+\frac{3}{19}$, $\frac{1}{19}a^{23}+\frac{2}{19}a^{19}-\frac{4}{19}a^{18}+\frac{2}{19}a^{17}-\frac{6}{19}a^{16}-\frac{3}{19}a^{15}+\frac{9}{19}a^{14}+\frac{5}{19}a^{13}+\frac{4}{19}a^{12}+\frac{5}{19}a^{11}-\frac{7}{19}a^{9}+\frac{4}{19}a^{8}-\frac{3}{19}a^{7}+\frac{7}{19}a^{6}-\frac{6}{19}a^{5}-\frac{4}{19}a^{4}-\frac{2}{19}a^{3}+\frac{4}{19}a^{2}+\frac{3}{19}a$, $\frac{1}{884089}a^{24}-\frac{12}{884089}a^{23}+\frac{7290}{884089}a^{22}+\frac{13378}{884089}a^{21}-\frac{11097}{884089}a^{20}-\frac{360802}{884089}a^{19}+\frac{429468}{884089}a^{18}-\frac{330395}{884089}a^{17}+\frac{167467}{884089}a^{16}+\frac{15213}{884089}a^{15}+\frac{35276}{884089}a^{14}+\frac{299454}{884089}a^{13}+\frac{325517}{884089}a^{12}+\frac{248474}{884089}a^{11}+\frac{34502}{884089}a^{10}-\frac{354819}{884089}a^{9}+\frac{314026}{884089}a^{8}+\frac{98453}{884089}a^{7}-\frac{410030}{884089}a^{6}-\frac{404468}{884089}a^{5}+\frac{35848}{884089}a^{4}+\frac{324267}{884089}a^{3}+\frac{380347}{884089}a^{2}-\frac{66331}{884089}a-\frac{124162}{884089}$, $\frac{1}{884089}a^{25}+\frac{7146}{884089}a^{23}+\frac{7796}{884089}a^{22}+\frac{9846}{884089}a^{21}+\frac{17875}{884089}a^{20}+\frac{287634}{884089}a^{19}-\frac{341720}{884089}a^{18}+\frac{297455}{884089}a^{17}-\frac{255202}{884089}a^{16}-\frac{107885}{884089}a^{15}-\frac{21730}{884089}a^{14}-\frac{408418}{884089}a^{13}-\frac{219236}{884089}a^{12}-\frac{380573}{884089}a^{11}-\frac{126919}{884089}a^{10}+\frac{290519}{884089}a^{9}+\frac{144285}{884089}a^{8}+\frac{352627}{884089}a^{7}+\frac{305423}{884089}a^{6}-\frac{350792}{884089}a^{5}-\frac{315770}{884089}a^{4}-\frac{9301}{884089}a^{3}+\frac{30857}{884089}a^{2}-\frac{268700}{884089}a-\frac{952}{884089}$, $\frac{1}{16\cdots 13}a^{26}-\frac{13}{16\cdots 13}a^{25}+\frac{19\cdots 84}{16\cdots 13}a^{24}-\frac{22\cdots 58}{16\cdots 13}a^{23}-\frac{23\cdots 96}{16\cdots 13}a^{22}-\frac{24\cdots 11}{16\cdots 13}a^{21}-\frac{10\cdots 35}{52\cdots 23}a^{20}+\frac{41\cdots 82}{16\cdots 13}a^{19}+\frac{20\cdots 39}{16\cdots 13}a^{18}-\frac{17\cdots 88}{16\cdots 13}a^{17}+\frac{98\cdots 25}{16\cdots 13}a^{16}-\frac{50\cdots 86}{16\cdots 13}a^{15}+\frac{46\cdots 05}{16\cdots 13}a^{14}+\frac{26\cdots 58}{16\cdots 13}a^{13}-\frac{43\cdots 13}{16\cdots 13}a^{12}+\frac{74\cdots 17}{16\cdots 13}a^{11}-\frac{22\cdots 48}{16\cdots 13}a^{10}+\frac{41\cdots 10}{16\cdots 13}a^{9}-\frac{33\cdots 29}{16\cdots 13}a^{8}+\frac{42\cdots 51}{16\cdots 13}a^{7}+\frac{50\cdots 64}{16\cdots 13}a^{6}-\frac{20\cdots 18}{16\cdots 13}a^{5}+\frac{59\cdots 26}{16\cdots 13}a^{4}-\frac{59\cdots 29}{16\cdots 13}a^{3}-\frac{25\cdots 45}{16\cdots 13}a^{2}-\frac{22\cdots 02}{52\cdots 23}a+\frac{77\cdots 60}{16\cdots 13}$, $\frac{1}{10\cdots 27}a^{27}+\frac{332926}{10\cdots 27}a^{26}+\frac{33\cdots 61}{10\cdots 27}a^{25}-\frac{43\cdots 53}{10\cdots 27}a^{24}-\frac{22\cdots 87}{10\cdots 27}a^{23}+\frac{10\cdots 51}{57\cdots 33}a^{22}-\frac{18\cdots 50}{10\cdots 27}a^{21}+\frac{12\cdots 79}{10\cdots 27}a^{20}+\frac{25\cdots 30}{10\cdots 27}a^{19}+\frac{35\cdots 89}{10\cdots 27}a^{18}-\frac{11\cdots 07}{10\cdots 27}a^{17}-\frac{34\cdots 78}{10\cdots 27}a^{16}+\frac{33\cdots 96}{10\cdots 27}a^{15}+\frac{28\cdots 05}{10\cdots 27}a^{14}+\frac{39\cdots 65}{10\cdots 27}a^{13}-\frac{39\cdots 13}{10\cdots 27}a^{12}-\frac{36\cdots 26}{10\cdots 27}a^{11}-\frac{16\cdots 44}{10\cdots 27}a^{10}-\frac{48\cdots 62}{10\cdots 27}a^{9}-\frac{18\cdots 07}{10\cdots 27}a^{8}-\frac{10\cdots 04}{57\cdots 33}a^{7}+\frac{69\cdots 90}{10\cdots 27}a^{6}+\frac{19\cdots 32}{10\cdots 27}a^{5}-\frac{74\cdots 58}{10\cdots 27}a^{4}-\frac{36\cdots 35}{10\cdots 27}a^{3}-\frac{43\cdots 83}{10\cdots 27}a^{2}+\frac{40\cdots 86}{10\cdots 27}a+\frac{28\cdots 31}{10\cdots 27}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   data not computed

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( \frac{15795504631906004542769610}{2753041279013794033518958125503} a^{27} - \frac{213239312530731061327389735}{2753041279013794033518958125503} a^{26} + \frac{67249723064341867027269576705}{52307784301262086636860204384557} a^{25} - \frac{621162745824729287224764439875}{52307784301262086636860204384557} a^{24} + \frac{300954060242413253239407840640}{2753041279013794033518958125503} a^{23} - \frac{39203996745841553886139617419815}{52307784301262086636860204384557} a^{22} + \frac{252804444134442193749543806216725}{52307784301262086636860204384557} a^{21} - \frac{1342899403468932465366496405999985}{52307784301262086636860204384557} a^{20} + \frac{6563972626823531673234701676462762}{52307784301262086636860204384557} a^{19} - \frac{1453273764305538925061246576201686}{2753041279013794033518958125503} a^{18} + \frac{105653946338703437077520595186124934}{52307784301262086636860204384557} a^{17} - \frac{354777638672675461679502343670748152}{52307784301262086636860204384557} a^{16} + \frac{1073403201314384185328989169967566304}{52307784301262086636860204384557} a^{15} - \frac{2867598510805650252410950083629048343}{52307784301262086636860204384557} a^{14} + \frac{6826329386925709932622952560366110319}{52307784301262086636860204384557} a^{13} - \frac{14295620155511572697431141310175782688}{52307784301262086636860204384557} a^{12} + \frac{26273052474072957748797660159212220886}{52307784301262086636860204384557} a^{11} - \frac{41914977663744480790014427481353633903}{52307784301262086636860204384557} a^{10} + \frac{57431295914556149060197347597426278734}{52307784301262086636860204384557} a^{9} - \frac{66672506534727593272151262097815306496}{52307784301262086636860204384557} a^{8} + \frac{64578063084576967415597838873770210010}{52307784301262086636860204384557} a^{7} - \frac{51262306519950275592508482217986506887}{52307784301262086636860204384557} a^{6} + \frac{32556667405334932659688253130236608466}{52307784301262086636860204384557} a^{5} - \frac{16004013522282706670618202951958886454}{52307784301262086636860204384557} a^{4} + \frac{5778438597361123166296802330604985285}{52307784301262086636860204384557} a^{3} - \frac{14459789158269996713192820117962238}{539255508260433882854228911181} a^{2} + \frac{194816515603723673545778491414099067}{52307784301262086636860204384557} a - \frac{10574032324567158408877033504854132}{52307784301262086636860204384557} \)  (order $4$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot R \cdot h}{4\cdot\sqrt{287622876985594783117337266142699525963070390548889600000000000000}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^28 - 14*x^27 + 231*x^26 - 2184*x^25 + 20125*x^24 - 140490*x^23 + 910749*x^22 - 4916494*x^21 + 24241980*x^20 - 103637310*x^19 + 401431380*x^18 - 1372183008*x^17 + 4220907614*x^16 - 11519186798*x^15 + 28049074701*x^14 - 60387086942*x^13 + 114593636066*x^12 - 190063611654*x^11 + 273107375450*x^10 - 336318155446*x^9 + 350769502895*x^8 - 305750098314*x^7 + 219150719501*x^6 - 126486255056*x^5 + 57086738898*x^4 - 19291033328*x^3 + 4559678865*x^2 - 667931418*x + 45398629); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{14}$ (as 28T2):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
An abelian group of order 28
The 28 conjugacy class representatives for $C_2\times C_{14}$
Character table for $C_2\times C_{14}$

Intermediate fields

\(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{15})\), 7.7.13841287201.1, 14.14.536304835877502397817583360000000.1, 14.0.32733449455413964710545859375.1, 14.0.3138866894939200133545984.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R R ${\href{/padicField/11.14.0.1}{14} }^{2}$ ${\href{/padicField/13.14.0.1}{14} }^{2}$ ${\href{/padicField/17.7.0.1}{7} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{14}$ ${\href{/padicField/23.14.0.1}{14} }^{2}$ ${\href{/padicField/29.14.0.1}{14} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{14}$ ${\href{/padicField/37.14.0.1}{14} }^{2}$ ${\href{/padicField/41.14.0.1}{14} }^{2}$ ${\href{/padicField/43.14.0.1}{14} }^{2}$ ${\href{/padicField/47.14.0.1}{14} }^{2}$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.14.0.1}{14} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.2.14a1.1$x^{14} + 2 x^{8} + 4 x^{7} + x^{2} + 4 x + 5$$2$$7$$14$$C_{14}$$$[2]^{7}$$
2.7.2.14a1.1$x^{14} + 2 x^{8} + 4 x^{7} + x^{2} + 4 x + 5$$2$$7$$14$$C_{14}$$$[2]^{7}$$
\(3\) Copy content Toggle raw display Deg $28$$2$$14$$14$
\(5\) Copy content Toggle raw display 5.7.2.7a1.1$x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$$2$$7$$7$$C_{14}$$$[\ ]_{2}^{7}$$
5.7.2.7a1.1$x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$$2$$7$$7$$C_{14}$$$[\ ]_{2}^{7}$$
\(7\) Copy content Toggle raw display 7.2.7.24a6.1$x^{14} + 42 x^{13} + 819 x^{12} + 9828 x^{11} + 80325 x^{10} + 463806 x^{9} + 1898127 x^{8} + 5419224 x^{7} + 10517283 x^{6} + 13522950 x^{5} + 11384793 x^{4} + 6184836 x^{3} + 2087127 x^{2} + 398034 x + 32812$$7$$2$$24$$C_{14}$$$[2]^{2}$$
7.2.7.24a6.1$x^{14} + 42 x^{13} + 819 x^{12} + 9828 x^{11} + 80325 x^{10} + 463806 x^{9} + 1898127 x^{8} + 5419224 x^{7} + 10517283 x^{6} + 13522950 x^{5} + 11384793 x^{4} + 6184836 x^{3} + 2087127 x^{2} + 398034 x + 32812$$7$$2$$24$$C_{14}$$$[2]^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)