\\ Pari/GP code for working with number field 28.0.28261019450929335045240957686456444760176459776.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^28 + 27*y^26 + 325*y^24 + 2300*y^22 + 10626*y^20 + 33649*y^18 + 74613*y^16 + 116280*y^14 + 125970*y^12 + 92378*y^10 + 43758*y^8 + 12376*y^6 + 1820*y^4 + 105*y^2 + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^28 + 27*x^26 + 325*x^24 + 2300*x^22 + 10626*x^20 + 33649*x^18 + 74613*x^16 + 116280*x^14 + 125970*x^12 + 92378*x^10 + 43758*x^8 + 12376*x^6 + 1820*x^4 + 105*x^2 + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])