Normalized defining polynomial
\( x^{28} + 27 x^{26} + 325 x^{24} + 2300 x^{22} + 10626 x^{20} + 33649 x^{18} + 74613 x^{16} + 116280 x^{14} + 125970 x^{12} + 92378 x^{10} + 43758 x^{8} + 12376 x^{6} + 1820 x^{4} + 105 x^{2} + 1 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(28261019450929335045240957686456444760176459776\)\(\medspace = 2^{28}\cdot 29^{26}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $45.60$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $28$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(116=2^{2}\cdot 29\) | ||
Dirichlet character group: | $\lbrace$$\chi_{116}(1,·)$, $\chi_{116}(67,·)$, $\chi_{116}(5,·)$, $\chi_{116}(7,·)$, $\chi_{116}(9,·)$, $\chi_{116}(13,·)$, $\chi_{116}(109,·)$, $\chi_{116}(115,·)$, $\chi_{116}(81,·)$, $\chi_{116}(83,·)$, $\chi_{116}(23,·)$, $\chi_{116}(25,·)$, $\chi_{116}(91,·)$, $\chi_{116}(93,·)$, $\chi_{116}(107,·)$, $\chi_{116}(33,·)$, $\chi_{116}(35,·)$, $\chi_{116}(65,·)$, $\chi_{116}(103,·)$, $\chi_{116}(71,·)$, $\chi_{116}(45,·)$, $\chi_{116}(111,·)$, $\chi_{116}(49,·)$, $\chi_{116}(51,·)$, $\chi_{116}(53,·)$, $\chi_{116}(57,·)$, $\chi_{116}(59,·)$, $\chi_{116}(63,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$
Class group and class number
$C_{4}\times C_{4}\times C_{84}$, which has order $1344$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -a^{27} - 26 a^{25} - 300 a^{23} - 2024 a^{21} - 8855 a^{19} - 26334 a^{17} - 54264 a^{15} - 77520 a^{13} - 75582 a^{11} - 48620 a^{9} - 19448 a^{7} - 4368 a^{5} - 455 a^{3} - 14 a \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 487075979.1876791 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{14}$ (as 28T2):
An abelian group of order 28 |
The 28 conjugacy class representatives for $C_2\times C_{14}$ |
Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
\(\Q(\sqrt{29}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-29}) \), \(\Q(i, \sqrt{29})\), 7.7.594823321.1, \(\Q(\zeta_{29})^+\), 14.0.5796901408038404767744.1, 14.0.168110140833113738264576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |