Normalized defining polynomial
\( x^{28} - x^{27} + 51 x^{26} - 64 x^{25} + 310 x^{24} - 1155 x^{23} - 7876 x^{22} - 36341 x^{21} - 5884 x^{20} - 28565 x^{19} + 2289507 x^{18} + 6735427 x^{17} + 12889086 x^{16} - 44127190 x^{15} - 68765767 x^{14} + 112739846 x^{13} - 244119948 x^{12} + 661911232 x^{11} + 656858657 x^{10} - 1574285300 x^{9} + 36632420 x^{8} - 3142097964 x^{7} + 12498470472 x^{6} - 11788049168 x^{5} + 11576546984 x^{4} - 220732122 x^{3} - 16100534512 x^{2} + 12497398748 x + 15073109483 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26011077544761738747855517343331362930821153062567249262964773=13^{21}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(377=13\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{377}(1,·)$, $\chi_{377}(194,·)$, $\chi_{377}(5,·)$, $\chi_{377}(326,·)$, $\chi_{377}(265,·)$, $\chi_{377}(138,·)$, $\chi_{377}(339,·)$, $\chi_{377}(86,·)$, $\chi_{377}(151,·)$, $\chi_{377}(216,·)$, $\chi_{377}(25,·)$, $\chi_{377}(285,·)$, $\chi_{377}(96,·)$, $\chi_{377}(34,·)$, $\chi_{377}(294,·)$, $\chi_{377}(103,·)$, $\chi_{377}(168,·)$, $\chi_{377}(233,·)$, $\chi_{377}(170,·)$, $\chi_{377}(109,·)$, $\chi_{377}(125,·)$, $\chi_{377}(53,·)$, $\chi_{377}(248,·)$, $\chi_{377}(57,·)$, $\chi_{377}(122,·)$, $\chi_{377}(187,·)$, $\chi_{377}(313,·)$, $\chi_{377}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} + \frac{7}{17} a^{13} + \frac{4}{17} a^{10} - \frac{6}{17} a^{9} - \frac{1}{17} a^{6} - \frac{7}{17} a^{5} - \frac{4}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{17} a^{15} + \frac{2}{17} a^{13} + \frac{4}{17} a^{11} + \frac{8}{17} a^{9} - \frac{1}{17} a^{7} - \frac{2}{17} a^{5} - \frac{4}{17} a^{3} - \frac{8}{17} a$, $\frac{1}{17} a^{16} + \frac{3}{17} a^{13} + \frac{4}{17} a^{12} - \frac{5}{17} a^{9} - \frac{1}{17} a^{8} - \frac{3}{17} a^{5} - \frac{4}{17} a^{4} + \frac{5}{17} a$, $\frac{1}{17} a^{17} - \frac{1}{17} a$, $\frac{1}{17} a^{18} - \frac{1}{17} a^{2}$, $\frac{1}{17} a^{19} - \frac{1}{17} a^{3}$, $\frac{1}{17} a^{20} - \frac{1}{17} a^{4}$, $\frac{1}{17} a^{21} - \frac{1}{17} a^{5}$, $\frac{1}{289} a^{22} + \frac{7}{289} a^{21} - \frac{3}{289} a^{20} - \frac{2}{289} a^{19} + \frac{6}{289} a^{18} - \frac{5}{289} a^{17} + \frac{2}{289} a^{16} + \frac{7}{289} a^{15} + \frac{8}{289} a^{14} + \frac{127}{289} a^{13} - \frac{94}{289} a^{12} - \frac{108}{289} a^{11} - \frac{121}{289} a^{10} - \frac{138}{289} a^{9} - \frac{138}{289} a^{8} - \frac{75}{289} a^{7} + \frac{93}{289} a^{6} + \frac{70}{289} a^{5} + \frac{131}{289} a^{4} + \frac{42}{289} a^{3} - \frac{72}{289} a^{2} + \frac{58}{289} a - \frac{7}{17}$, $\frac{1}{289} a^{23} - \frac{1}{289} a^{21} + \frac{2}{289} a^{20} + \frac{3}{289} a^{19} + \frac{4}{289} a^{18} + \frac{3}{289} a^{17} - \frac{7}{289} a^{16} - \frac{7}{289} a^{15} + \frac{3}{289} a^{14} + \frac{54}{289} a^{13} - \frac{28}{289} a^{12} - \frac{96}{289} a^{11} - \frac{141}{289} a^{10} + \frac{63}{289} a^{9} + \frac{24}{289} a^{8} + \frac{6}{289} a^{7} + \frac{65}{289} a^{6} - \frac{2}{289} a^{5} + \frac{9}{289} a^{4} + \frac{93}{289} a^{3} - \frac{84}{289} a^{2} - \frac{15}{289} a - \frac{2}{17}$, $\frac{1}{289} a^{24} - \frac{8}{289} a^{21} + \frac{2}{289} a^{19} - \frac{8}{289} a^{18} + \frac{5}{289} a^{17} - \frac{5}{289} a^{16} - \frac{7}{289} a^{15} - \frac{6}{289} a^{14} - \frac{122}{289} a^{13} + \frac{99}{289} a^{12} - \frac{28}{289} a^{11} - \frac{41}{289} a^{10} - \frac{131}{289} a^{9} - \frac{132}{289} a^{8} + \frac{7}{289} a^{7} - \frac{130}{289} a^{6} + \frac{28}{289} a^{5} - \frac{65}{289} a^{4} + \frac{26}{289} a^{3} - \frac{87}{289} a^{2} + \frac{24}{289} a - \frac{7}{17}$, $\frac{1}{289} a^{25} + \frac{5}{289} a^{21} - \frac{5}{289} a^{20} - \frac{7}{289} a^{19} + \frac{2}{289} a^{18} + \frac{6}{289} a^{17} - \frac{8}{289} a^{16} - \frac{1}{289} a^{15} - \frac{7}{289} a^{14} - \frac{126}{289} a^{13} + \frac{19}{289} a^{12} + \frac{47}{289} a^{11} - \frac{28}{289} a^{10} - \frac{131}{289} a^{9} + \frac{76}{289} a^{8} - \frac{101}{289} a^{7} + \frac{143}{289} a^{6} + \frac{53}{289} a^{5} - \frac{31}{289} a^{4} - \frac{142}{289} a^{3} - \frac{127}{289} a^{2} + \frac{56}{289} a - \frac{5}{17}$, $\frac{1}{6142338195109} a^{26} - \frac{9842859557}{6142338195109} a^{25} + \frac{6612566363}{6142338195109} a^{24} - \frac{7844893735}{6142338195109} a^{23} + \frac{7737564557}{6142338195109} a^{22} - \frac{47092104612}{6142338195109} a^{21} - \frac{108180978182}{6142338195109} a^{20} + \frac{95756267650}{6142338195109} a^{19} - \frac{44938370620}{6142338195109} a^{18} + \frac{67103296755}{6142338195109} a^{17} + \frac{159697383612}{6142338195109} a^{16} + \frac{11399526139}{6142338195109} a^{15} + \frac{2811487394}{6142338195109} a^{14} - \frac{1295161459897}{6142338195109} a^{13} + \frac{2739678105600}{6142338195109} a^{12} - \frac{486085291523}{6142338195109} a^{11} + \frac{782580589127}{6142338195109} a^{10} - \frac{699828991935}{6142338195109} a^{9} + \frac{551516329649}{6142338195109} a^{8} - \frac{676216973897}{6142338195109} a^{7} - \frac{1051149174438}{6142338195109} a^{6} + \frac{56816212090}{6142338195109} a^{5} - \frac{330444372992}{6142338195109} a^{4} - \frac{2993891440093}{6142338195109} a^{3} - \frac{230699141933}{6142338195109} a^{2} + \frac{777814595506}{6142338195109} a + \frac{49156642746}{361314011477}$, $\frac{1}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{27} - \frac{31494528376106345178576581729388345178502662473709050588540008545710886287867855078528102745852978826623651430759380010452336}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{26} - \frac{649390787099952522160452167640043482889299422378960631569117287673324557011678541211745238180193417748380471317357084289300846116810025}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{25} - \frac{2252996349840042680914372692406917447765537077384788034656255687017801050885676548781459648921626070459332437432262408881464370645905816}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{24} - \frac{1243319070745134580925009973709320298191579172858994705743846221203265573274980921724106917404409075099210875479340013029580823869660579}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{23} + \frac{254538849571083461329526904292576956615242175354238614087741774759134866567539569016326826487810586435831290943099125648572650304646692}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{22} + \frac{34766294462533824924412085018543436088097056374071858299240109014990232322201676657528269315744722354106560980535416460402711397873226478}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{21} + \frac{889986812582423330937757270100866725740458526031259555977684358183811684465779699000395220057806062055215781621083427119306917272871320}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{20} - \frac{2465457306661299416816787270356844081693883326944034479713349709611573581720905189967573920772712585056985934642163612153458809720130731}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{19} - \frac{9549578552640742410397342135557709605613478749672481297212872581243672856882327090914665140785458957378466961514421475768298019036462447}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{18} + \frac{32359233298520395903839133668868458792155396252569730910594150516683617530068325407111860169491765031324488185003132047795591278082064428}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{17} - \frac{16711440392328973104088819701251485670721930535175180778718750129710323414701041938098666123144302244601706280138976404607508149451146698}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{16} - \frac{17723606217530604050488748495387447228864890732039250914628433223293146661877096287205023167016148085700518323672192069470473080549920999}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{15} - \frac{30652759064274579219838076290194436682001319734944874410172322454045756658725194506239850770460748959356009708392018573944449044091119114}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{14} - \frac{522122509699618892358340740039353151901227572460583968852480967137835343235919186361346722646752839220354504878765316145729954725657701585}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{13} + \frac{624094329735527447957725771703643820983658963419437458691321863691912184064399540807249555713403124534216173759076119516005234892780171675}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{12} - \frac{490617805560026283860215177898443566023205066948001472922535554883654258587295956861283255615966334472643848992031298126931503169643908376}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{11} + \frac{26516655548508369968675825025885191675796201141040713564539265450187050903857815318013462467354525296076294166540701099062413393643063004}{82505941651818760816973211618526570995945908417827837479188636363273849527555797996595446115576804511191749225003408606545593609539955543} a^{10} + \frac{607731639223031281084789761640603242199063769987009345247581109412890874216854695155627269613459903596119614514833266582761485499475747555}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{9} + \frac{85033351971588706335923308786382152430528274291200224797001710641361172802860700747888973009286866756493058624478485010847413731889336014}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{8} + \frac{523527661021994334253092935600457718686395650262479048595567554057577982226933373370728476827409639351389883188245049115076661163256129183}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{7} - \frac{91965932880069497472348402667421320084563937966192776895601123891075314541629413119307344585522870133102653304207129863473593851592150987}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{6} + \frac{497072018830865111756685645607648079739912248397756622422366319461918666301701134528544147813520334989132784765247735408515323554391770550}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{5} + \frac{473612741508679655227843994069878652755775633600552667569238452509554444246858112696605438163682649797517443652370370279921559052954971108}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{4} + \frac{25125464164062465062040584288007330915631868244202526473273642566300412942247631248178961399787607566159657980447345133464767660770572582}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{3} - \frac{547760476116581323087762636262167752339085227417473441568138368953553887887216275215074880423073943853943187683212803568716148681172782163}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a^{2} - \frac{289655843158939382315071020770625108876153344415999697383288322844347795478569776193000730702675216478901199670661973077785596280056735687}{1402601008080918933888544597514951706931080443103073237146206818175655441968448565942122583964805676690259736825057946311275091362179244231} a - \frac{26413261715743965376611603759710340857065285065646171046258122729495483039445653187302329534515230577020258083492056060965893866981922057}{82505941651818760816973211618526570995945908417827837479188636363273849527555797996595446115576804511191749225003408606545593609539955543}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1801972}$, which has order $28831552$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1523489837639.8035 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.1847677.1, 7.7.594823321.1, 14.14.22201352938819688612162197.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | $28$ | $28$ | $28$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{28}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |