Normalized defining polynomial
\( x^{28} + 27 x^{26} + 411 x^{24} + 2977 x^{22} + 14430 x^{20} + 6532 x^{18} + 178104 x^{16} - 578821 x^{14} + 8840544 x^{12} - 43934230 x^{10} + 167974631 x^{8} - 400934959 x^{6} + 707029168 x^{4} - 748889507 x^{2} + 495997441 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22791052858328956460332445607300922515156603344533848064=2^{28}\cdot 7^{14}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(812=2^{2}\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{812}(1,·)$, $\chi_{812}(603,·)$, $\chi_{812}(587,·)$, $\chi_{812}(517,·)$, $\chi_{812}(393,·)$, $\chi_{812}(139,·)$, $\chi_{812}(239,·)$, $\chi_{812}(141,·)$, $\chi_{812}(335,·)$, $\chi_{812}(83,·)$, $\chi_{812}(407,·)$, $\chi_{812}(281,·)$, $\chi_{812}(687,·)$, $\chi_{812}(349,·)$, $\chi_{812}(645,·)$, $\chi_{812}(545,·)$, $\chi_{812}(197,·)$, $\chi_{812}(547,·)$, $\chi_{812}(741,·)$, $\chi_{812}(169,·)$, $\chi_{812}(223,·)$, $\chi_{812}(111,·)$, $\chi_{812}(755,·)$, $\chi_{812}(181,·)$, $\chi_{812}(489,·)$, $\chi_{812}(799,·)$, $\chi_{812}(629,·)$, $\chi_{812}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{17} a^{22} + \frac{7}{17} a^{20} + \frac{6}{17} a^{18} - \frac{8}{17} a^{16} - \frac{3}{17} a^{14} - \frac{4}{17} a^{10} - \frac{6}{17} a^{8} + \frac{7}{17} a^{6} + \frac{8}{17} a^{4} - \frac{7}{17} a^{2} + \frac{5}{17}$, $\frac{1}{17} a^{23} + \frac{7}{17} a^{21} + \frac{6}{17} a^{19} - \frac{8}{17} a^{17} - \frac{3}{17} a^{15} - \frac{4}{17} a^{11} - \frac{6}{17} a^{9} + \frac{7}{17} a^{7} + \frac{8}{17} a^{5} - \frac{7}{17} a^{3} + \frac{5}{17} a$, $\frac{1}{5899} a^{24} + \frac{1}{5899} a^{22} - \frac{1362}{5899} a^{20} + \frac{1248}{5899} a^{18} + \frac{1796}{5899} a^{16} - \frac{2396}{5899} a^{14} - \frac{803}{5899} a^{12} - \frac{16}{5899} a^{10} - \frac{2762}{5899} a^{8} + \frac{59}{347} a^{6} - \frac{2044}{5899} a^{4} + \frac{2189}{5899} a^{2} + \frac{2673}{5899}$, $\frac{1}{5899} a^{25} + \frac{1}{5899} a^{23} - \frac{1362}{5899} a^{21} + \frac{1248}{5899} a^{19} + \frac{1796}{5899} a^{17} - \frac{2396}{5899} a^{15} - \frac{803}{5899} a^{13} - \frac{16}{5899} a^{11} - \frac{2762}{5899} a^{9} + \frac{59}{347} a^{7} - \frac{2044}{5899} a^{5} + \frac{2189}{5899} a^{3} + \frac{2673}{5899} a$, $\frac{1}{3874074053765391278251991125415695934466084294809323} a^{26} - \frac{240510165087645602369902184768004760342799850337}{3874074053765391278251991125415695934466084294809323} a^{24} - \frac{101524877353725671947336651315593424167397726003762}{3874074053765391278251991125415695934466084294809323} a^{22} + \frac{1396648126321254773033681190197882911807603254342988}{3874074053765391278251991125415695934466084294809323} a^{20} + \frac{342318949716324631746705582670624827233260523544960}{3874074053765391278251991125415695934466084294809323} a^{18} - \frac{21593865028744757095410433402456286645272970483226}{3874074053765391278251991125415695934466084294809323} a^{16} - \frac{91153746658026854252640311201674376458738319048130}{3874074053765391278251991125415695934466084294809323} a^{14} + \frac{39197460678361332787342934547019356197377858257037}{94489611067448567762243685985748681328441080361203} a^{12} + \frac{480413606472643642049437459363385884314026470031722}{3874074053765391278251991125415695934466084294809323} a^{10} - \frac{1855960923050008431661952724402139055689737360049324}{3874074053765391278251991125415695934466084294809323} a^{8} - \frac{1928123153335777057672101734276144381113842803963353}{3874074053765391278251991125415695934466084294809323} a^{6} + \frac{1281917996560290577331722296794632443990011616761377}{3874074053765391278251991125415695934466084294809323} a^{4} + \frac{767597288149998548487017302012640419407639727983875}{3874074053765391278251991125415695934466084294809323} a^{2} - \frac{772846648302245651413468808592702734664272495472077}{3874074053765391278251991125415695934466084294809323}$, $\frac{1}{86279503251409029157950094354132964156494163329698432533} a^{27} + \frac{148485006364092738073175651238096075227170765263603}{5075264897141707597526476138478409656264362548805790149} a^{25} + \frac{338555856582409887663351190497690425702835691309430851}{86279503251409029157950094354132964156494163329698432533} a^{23} - \frac{34211229726930729552219314069551533276097512091387079666}{86279503251409029157950094354132964156494163329698432533} a^{21} - \frac{2623065176417410928406042165979615390363214426935563619}{86279503251409029157950094354132964156494163329698432533} a^{19} - \frac{19164212183601040349505205325043517746257713675970734007}{86279503251409029157950094354132964156494163329698432533} a^{17} + \frac{26775131328684501752633160432551916592226811919413975706}{86279503251409029157950094354132964156494163329698432533} a^{15} + \frac{500809228278655875147561013100156268030522876974877102}{2104378128083147052632929130588608881865711300724352013} a^{13} + \frac{36058482789989668924292193284327251700587539429948421009}{86279503251409029157950094354132964156494163329698432533} a^{11} - \frac{31054134350060989533573099637089324538264967781029608015}{86279503251409029157950094354132964156494163329698432533} a^{9} + \frac{24164327788536607444224547968842156333833366141804341157}{86279503251409029157950094354132964156494163329698432533} a^{7} - \frac{7998007193912315080526593853552242747015935965541084216}{86279503251409029157950094354132964156494163329698432533} a^{5} - \frac{9626004328664205510652583633896135642111104696277894360}{86279503251409029157950094354132964156494163329698432533} a^{3} - \frac{29158424779211066294061660995262597938585446836261673974}{86279503251409029157950094354132964156494163329698432533} a$
Class group and class number
$C_{4}\times C_{28}\times C_{28}$, which has order $3136$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{9782543304320248700251019}{205754832990906140078931100065719} a^{27} + \frac{253251841336019702913259789}{205754832990906140078931100065719} a^{25} + \frac{3666110652950461555928384359}{205754832990906140078931100065719} a^{23} + \frac{22888203162067946290263959375}{205754832990906140078931100065719} a^{21} + \frac{80351826153513962225899677975}{205754832990906140078931100065719} a^{19} - \frac{328085531477014816014206006597}{205754832990906140078931100065719} a^{17} + \frac{370908401486471590791555243999}{205754832990906140078931100065719} a^{15} - \frac{248338140287678230624928130921}{5018410560753808294608075611359} a^{13} + \frac{79300830764757660494371007358738}{205754832990906140078931100065719} a^{11} - \frac{509985551318620461101034274888946}{205754832990906140078931100065719} a^{9} + \frac{1651613258390634666509383141233011}{205754832990906140078931100065719} a^{7} - \frac{3989771569608108158499894023017374}{205754832990906140078931100065719} a^{5} + \frac{5352485116038112886519903841895783}{205754832990906140078931100065719} a^{3} - \frac{4735567434161807016480643192805695}{205754832990906140078931100065719} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4951230435467.248 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{7}) \), \(\Q(i, \sqrt{7})\), 7.7.594823321.1, 14.0.291381688005381590432263.1, 14.0.5796901408038404767744.1, 14.14.4773997576280171977642196992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |