Normalized defining polynomial
\( x^{28} + 69 x^{26} + 1974 x^{24} + 30865 x^{22} + 294090 x^{20} + 1804843 x^{18} + 7322517 x^{16} + 19717109 x^{14} + 34627149 x^{12} + 38013350 x^{10} + 24218096 x^{8} + 8079074 x^{6} + 1320817 x^{4} + 92266 x^{2} + 1681 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(205102941494858641164670947835018741350400000000000000=2^{28}\cdot 5^{14}\cdot 29^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(580=2^{2}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{580}(1,·)$, $\chi_{580}(451,·)$, $\chi_{580}(199,·)$, $\chi_{580}(139,·)$, $\chi_{580}(141,·)$, $\chi_{580}(59,·)$, $\chi_{580}(401,·)$, $\chi_{580}(339,·)$, $\chi_{580}(529,·)$, $\chi_{580}(471,·)$, $\chi_{580}(281,·)$, $\chi_{580}(431,·)$, $\chi_{580}(349,·)$, $\chi_{580}(459,·)$, $\chi_{580}(161,·)$, $\chi_{580}(291,·)$, $\chi_{580}(81,·)$, $\chi_{580}(169,·)$, $\chi_{580}(429,·)$, $\chi_{580}(239,·)$, $\chi_{580}(49,·)$, $\chi_{580}(371,·)$, $\chi_{580}(181,·)$, $\chi_{580}(219,·)$, $\chi_{580}(489,·)$, $\chi_{580}(111,·)$, $\chi_{580}(571,·)$, $\chi_{580}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{41} a^{19} + \frac{5}{41} a^{17} + \frac{16}{41} a^{15} - \frac{15}{41} a^{13} - \frac{4}{41} a^{11} - \frac{3}{41} a^{9} - \frac{14}{41} a^{7} - \frac{3}{41} a^{5} + \frac{1}{41} a^{3} + \frac{16}{41} a$, $\frac{1}{41} a^{20} + \frac{5}{41} a^{18} + \frac{16}{41} a^{16} - \frac{15}{41} a^{14} - \frac{4}{41} a^{12} - \frac{3}{41} a^{10} - \frac{14}{41} a^{8} - \frac{3}{41} a^{6} + \frac{1}{41} a^{4} + \frac{16}{41} a^{2}$, $\frac{1}{41} a^{21} - \frac{9}{41} a^{17} - \frac{13}{41} a^{15} - \frac{11}{41} a^{13} + \frac{17}{41} a^{11} + \frac{1}{41} a^{9} - \frac{15}{41} a^{7} + \frac{16}{41} a^{5} + \frac{11}{41} a^{3} + \frac{2}{41} a$, $\frac{1}{697} a^{22} + \frac{6}{697} a^{20} + \frac{103}{697} a^{18} + \frac{329}{697} a^{16} - \frac{224}{697} a^{14} + \frac{116}{697} a^{12} - \frac{181}{697} a^{10} - \frac{222}{697} a^{8} - \frac{125}{697} a^{6} - \frac{188}{697} a^{4} - \frac{66}{697} a^{2} - \frac{1}{17}$, $\frac{1}{697} a^{23} + \frac{6}{697} a^{21} + \frac{1}{697} a^{19} - \frac{181}{697} a^{17} + \frac{235}{697} a^{15} + \frac{252}{697} a^{13} + \frac{227}{697} a^{11} + \frac{84}{697} a^{9} - \frac{91}{697} a^{7} + \frac{118}{697} a^{5} - \frac{168}{697} a^{3} - \frac{279}{697} a$, $\frac{1}{4980118669} a^{24} + \frac{2783324}{4980118669} a^{22} - \frac{59097396}{4980118669} a^{20} + \frac{260142159}{4980118669} a^{18} - \frac{799373620}{4980118669} a^{16} + \frac{1385484718}{4980118669} a^{14} - \frac{1906305581}{4980118669} a^{12} - \frac{1815298344}{4980118669} a^{10} - \frac{2191529635}{4980118669} a^{8} + \frac{1939393871}{4980118669} a^{6} + \frac{1967003488}{4980118669} a^{4} - \frac{1175056885}{4980118669} a^{2} + \frac{43383412}{121466309}$, $\frac{1}{4980118669} a^{25} + \frac{2783324}{4980118669} a^{23} - \frac{59097396}{4980118669} a^{21} + \frac{17209541}{4980118669} a^{19} - \frac{2014036710}{4980118669} a^{17} + \frac{2478681499}{4980118669} a^{15} + \frac{42382529}{121466309} a^{13} - \frac{843567872}{4980118669} a^{11} - \frac{1462731781}{4980118669} a^{9} + \frac{360331854}{4980118669} a^{7} - \frac{2284317327}{4980118669} a^{5} - \frac{1417989503}{4980118669} a^{3} - \frac{2108201996}{4980118669} a$, $\frac{1}{48726178279089778669} a^{26} + \frac{2581602224}{48726178279089778669} a^{24} - \frac{32927740787461464}{48726178279089778669} a^{22} - \frac{404349695046022644}{48726178279089778669} a^{20} - \frac{677986517887625026}{2866245781122928157} a^{18} - \frac{1439335712819665506}{48726178279089778669} a^{16} + \frac{23088731755815567971}{48726178279089778669} a^{14} + \frac{9369540585218245119}{48726178279089778669} a^{12} + \frac{12343186782872122929}{48726178279089778669} a^{10} - \frac{6691554883289951982}{48726178279089778669} a^{8} + \frac{20259423277446911726}{48726178279089778669} a^{6} - \frac{8869523208522272700}{48726178279089778669} a^{4} - \frac{20404191615545548828}{48726178279089778669} a^{2} + \frac{3308501989891473}{28986423723432349}$, $\frac{1}{48726178279089778669} a^{27} + \frac{2581602224}{48726178279089778669} a^{25} - \frac{32927740787461464}{48726178279089778669} a^{23} - \frac{404349695046022644}{48726178279089778669} a^{21} + \frac{21097818971625744}{2866245781122928157} a^{19} + \frac{9256654641126871275}{48726178279089778669} a^{17} + \frac{18334958265172662735}{48726178279089778669} a^{15} - \frac{22718430476621365224}{48726178279089778669} a^{13} + \frac{13531630155532849238}{48726178279089778669} a^{11} + \frac{6381322215978037417}{48726178279089778669} a^{9} + \frac{55885942214564473}{48726178279089778669} a^{7} + \frac{4203353890745716699}{48726178279089778669} a^{5} - \frac{8519757888938285738}{48726178279089778669} a^{3} + \frac{19702886691820997}{1188443372660726309} a$
Class group and class number
$C_{4}\times C_{28}\times C_{812}$, which has order $90944$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{76312508254}{1018332217582181} a^{27} + \frac{4887465691706}{1018332217582181} a^{25} + \frac{125531913681362}{1018332217582181} a^{23} + \frac{1673688288942610}{1018332217582181} a^{21} + \frac{12513121902505317}{1018332217582181} a^{19} + \frac{3033452798317255}{59901895151893} a^{17} + \frac{89691424738823298}{1018332217582181} a^{15} - \frac{132263574798686820}{1018332217582181} a^{13} - \frac{1006293990451061196}{1018332217582181} a^{11} - \frac{2148704059783968070}{1018332217582181} a^{9} - \frac{2239360689609567932}{1018332217582181} a^{7} - \frac{1125749116331006403}{1018332217582181} a^{5} - \frac{219195043656905800}{1018332217582181} a^{3} - \frac{276729386944036}{24837371160541} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34681517373.86067 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{5})\), 7.7.594823321.1, 14.14.27641779937927268828125.1, 14.0.452882922503000372480000000.1, 14.0.5796901408038404767744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{28}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |