Normalized defining polynomial
\( x^{28} - 37 x^{26} + 899 x^{24} - 11816 x^{22} + 109211 x^{20} - 689424 x^{18} + 3252533 x^{16} - 11374748 x^{14} + 30588386 x^{12} - 61574116 x^{10} + 93616839 x^{8} - 99291934 x^{6} + 71950767 x^{4} - 24588641 x^{2} + 5764801 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2050125174461338816008034482151201300557313248344408064=2^{28}\cdot 3^{14}\cdot 43^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(516=2^{2}\cdot 3\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{516}(1,·)$, $\chi_{516}(259,·)$, $\chi_{516}(133,·)$, $\chi_{516}(385,·)$, $\chi_{516}(11,·)$, $\chi_{516}(269,·)$, $\chi_{516}(365,·)$, $\chi_{516}(145,·)$, $\chi_{516}(403,·)$, $\chi_{516}(355,·)$, $\chi_{516}(47,·)$, $\chi_{516}(107,·)$, $\chi_{516}(97,·)$, $\chi_{516}(35,·)$, $\chi_{516}(391,·)$, $\chi_{516}(293,·)$, $\chi_{516}(379,·)$, $\chi_{516}(41,·)$, $\chi_{516}(193,·)$, $\chi_{516}(299,·)$, $\chi_{516}(173,·)$, $\chi_{516}(451,·)$, $\chi_{516}(431,·)$, $\chi_{516}(305,·)$, $\chi_{516}(121,·)$, $\chi_{516}(59,·)$, $\chi_{516}(317,·)$, $\chi_{516}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{6}$, $\frac{1}{7} a^{13} - \frac{1}{7} a$, $\frac{1}{49} a^{14} + \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{49} a^{15} + \frac{2}{49} a^{9} + \frac{1}{49} a^{3}$, $\frac{1}{49} a^{16} + \frac{2}{49} a^{10} + \frac{1}{49} a^{4}$, $\frac{1}{343} a^{17} - \frac{3}{343} a^{15} - \frac{3}{49} a^{13} + \frac{2}{343} a^{11} - \frac{13}{343} a^{9} - \frac{3}{49} a^{7} + \frac{148}{343} a^{5} - \frac{10}{343} a^{3} + \frac{1}{7} a$, $\frac{1}{343} a^{18} - \frac{3}{343} a^{16} + \frac{2}{343} a^{12} - \frac{13}{343} a^{10} + \frac{3}{49} a^{8} + \frac{148}{343} a^{6} - \frac{10}{343} a^{4} + \frac{10}{49} a^{2}$, $\frac{1}{343} a^{19} - \frac{2}{343} a^{15} - \frac{12}{343} a^{13} - \frac{1}{49} a^{11} - \frac{4}{343} a^{9} - \frac{13}{343} a^{7} + \frac{13}{49} a^{5} + \frac{47}{343} a^{3}$, $\frac{1}{88837} a^{20} + \frac{104}{88837} a^{18} - \frac{328}{88837} a^{16} - \frac{726}{88837} a^{14} + \frac{5787}{88837} a^{12} - \frac{4569}{88837} a^{10} + \frac{253}{88837} a^{8} - \frac{6714}{88837} a^{6} - \frac{31289}{88837} a^{4} - \frac{898}{1813} a^{2} + \frac{7}{37}$, $\frac{1}{88837} a^{21} + \frac{104}{88837} a^{19} - \frac{69}{88837} a^{17} + \frac{310}{88837} a^{15} + \frac{348}{88837} a^{13} - \frac{4051}{88837} a^{11} + \frac{512}{88837} a^{9} + \frac{538}{88837} a^{7} + \frac{7043}{88837} a^{5} + \frac{6294}{12691} a^{3} + \frac{123}{259} a$, $\frac{1}{88837} a^{22} - \frac{1}{12691} a^{18} - \frac{25}{88837} a^{16} - \frac{6}{1813} a^{14} - \frac{51}{12691} a^{12} + \frac{682}{88837} a^{10} - \frac{8}{1813} a^{8} - \frac{4656}{12691} a^{6} + \frac{14771}{88837} a^{4} + \frac{236}{1813} a^{2} + \frac{12}{37}$, $\frac{1}{88837} a^{23} - \frac{1}{12691} a^{19} - \frac{25}{88837} a^{17} - \frac{6}{1813} a^{15} - \frac{51}{12691} a^{13} + \frac{682}{88837} a^{11} - \frac{8}{1813} a^{9} + \frac{783}{12691} a^{7} + \frac{14771}{88837} a^{5} + \frac{236}{1813} a^{3} - \frac{64}{259} a$, $\frac{1}{88837} a^{24} - \frac{2}{2401} a^{18} - \frac{1}{343} a^{16} + \frac{1564}{88837} a^{12} + \frac{12}{343} a^{10} + \frac{1}{49} a^{8} - \frac{206}{2401} a^{6} + \frac{13}{343} a^{4} - \frac{13}{49} a^{2} + \frac{12}{37}$, $\frac{1}{621859} a^{25} - \frac{2}{621859} a^{23} + \frac{3}{621859} a^{21} + \frac{36}{88837} a^{19} + \frac{620}{621859} a^{17} + \frac{2036}{621859} a^{15} + \frac{19639}{621859} a^{13} + \frac{4248}{88837} a^{11} - \frac{40156}{621859} a^{9} + \frac{37420}{621859} a^{7} - \frac{168993}{621859} a^{5} - \frac{4609}{12691} a^{3} + \frac{9}{259} a$, $\frac{1}{902956550091201613224077515459} a^{26} + \frac{4289749219319939240447601}{902956550091201613224077515459} a^{24} - \frac{896762801448407592080603}{902956550091201613224077515459} a^{22} - \frac{631089683759252350669821}{128993792870171659032011073637} a^{20} - \frac{723583415317712580057962503}{902956550091201613224077515459} a^{18} - \frac{7846646896650653354614865662}{902956550091201613224077515459} a^{16} - \frac{7304690337493270708931193105}{902956550091201613224077515459} a^{14} + \frac{4342944371134663276850951848}{128993792870171659032011073637} a^{12} + \frac{55980646458915917797701972780}{902956550091201613224077515459} a^{10} - \frac{33813813187041459680029580640}{902956550091201613224077515459} a^{8} - \frac{47202781118199081781927157272}{902956550091201613224077515459} a^{6} - \frac{328149174445090278310631506}{2632526385105544061877777013} a^{4} + \frac{13740389722312626411933855}{53725028267460082895464837} a^{2} + \frac{1907846384410477391376126}{7675004038208583270780691}$, $\frac{1}{6320695850638411292568542608213} a^{27} + \frac{4289749219319939240447601}{6320695850638411292568542608213} a^{25} - \frac{31389346412709535721939024}{6320695850638411292568542608213} a^{23} + \frac{2272965898265616995030981}{902956550091201613224077515459} a^{21} - \frac{3661035636535867923234323726}{6320695850638411292568542608213} a^{19} + \frac{2043114387935039202169215549}{6320695850638411292568542608213} a^{17} + \frac{42184772863583540245829024178}{6320695850638411292568542608213} a^{15} + \frac{2771850301259208960826817966}{902956550091201613224077515459} a^{13} + \frac{139743773639050236770423055267}{6320695850638411292568542608213} a^{11} + \frac{241269947764682264222133188008}{6320695850638411292568542608213} a^{9} - \frac{98094903165393904630660861921}{6320695850638411292568542608213} a^{7} - \frac{2966098438851762412538033486}{18427684695738808433144439091} a^{5} + \frac{97424603636988453271720231}{376075197872220580268253859} a^{3} + \frac{20369342584425718231902653}{53725028267460082895464837} a$
Class group and class number
$C_{8729}$, which has order $8729$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{702552625440833448228524}{6320695850638411292568542608213} a^{27} + \frac{22590158191712233281183282}{6320695850638411292568542608213} a^{25} - \frac{515036051543751530787087088}{6320695850638411292568542608213} a^{23} + \frac{797567647984299180487112568}{902956550091201613224077515459} a^{21} - \frac{44689632286000558212613656425}{6320695850638411292568542608213} a^{19} + \frac{216803629100634460009253538070}{6320695850638411292568542608213} a^{17} - \frac{858104776069595042494620099634}{6320695850638411292568542608213} a^{15} + \frac{333101226173592726650367465235}{902956550091201613224077515459} a^{13} - \frac{5834671658562542783606958636278}{6320695850638411292568542608213} a^{11} + \frac{9815814069286565660186201865648}{6320695850638411292568542608213} a^{9} - \frac{15177569450807493323062597822543}{6320695850638411292568542608213} a^{7} + \frac{527747664298346291515043926}{376075197872220580268253859} a^{5} - \frac{26359579654724058992997294}{53725028267460082895464837} a^{3} - \frac{80027787959442893570331775}{53725028267460082895464837} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3767000207683.561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\), 7.7.6321363049.1, 14.14.1431825818478399563185963008.1, 14.0.654698590982350051753984.1, 14.0.87391712553613254588987.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{28}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |
| 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |