# SageMath code for working with number field 28.0.20444429365013571404907915184985572799247638801.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]