Properties

Label 28.0.204...801.1
Degree $28$
Signature $[0, 14]$
Discriminant $2.044\times 10^{46}$
Root discriminant \(45.08\)
Ramified primes $7,449$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{28}$ (as 28T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675)
 
gp: K = bnfinit(y^28 - 6*y^27 + 18*y^26 + 6*y^25 - 69*y^24 + 47*y^23 + 257*y^22 - 674*y^21 + 321*y^20 + 545*y^19 - 15*y^18 - 692*y^17 + 1854*y^16 - 6800*y^15 + 5094*y^14 + 6261*y^13 - 5929*y^12 + 6262*y^11 - 14458*y^10 - 7839*y^9 + 27851*y^8 - 6775*y^7 + 6005*y^6 - 1487*y^5 - 35142*y^4 + 22011*y^3 + 18446*y^2 - 12525*y + 2675, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675)
 

\( x^{28} - 6 x^{27} + 18 x^{26} + 6 x^{25} - 69 x^{24} + 47 x^{23} + 257 x^{22} - 674 x^{21} + 321 x^{20} + \cdots + 2675 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(20444429365013571404907915184985572799247638801\) \(\medspace = 7^{14}\cdot 449^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.08\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{1/2}449^{1/2}\approx 56.06246516163912$
Ramified primes:   \(7\), \(449\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{449}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7}a^{12}-\frac{2}{7}a^{6}+\frac{1}{7}$, $\frac{1}{7}a^{13}-\frac{2}{7}a^{7}+\frac{1}{7}a$, $\frac{1}{7}a^{14}-\frac{2}{7}a^{8}+\frac{1}{7}a^{2}$, $\frac{1}{7}a^{15}-\frac{2}{7}a^{9}+\frac{1}{7}a^{3}$, $\frac{1}{35}a^{16}+\frac{1}{35}a^{13}+\frac{1}{7}a^{10}+\frac{1}{7}a^{7}+\frac{1}{35}a^{4}+\frac{1}{35}a$, $\frac{1}{35}a^{17}+\frac{1}{35}a^{14}+\frac{1}{7}a^{11}+\frac{1}{7}a^{8}+\frac{1}{35}a^{5}+\frac{1}{35}a^{2}$, $\frac{1}{35}a^{18}+\frac{1}{35}a^{15}+\frac{1}{7}a^{9}+\frac{11}{35}a^{6}+\frac{1}{35}a^{3}-\frac{1}{7}$, $\frac{1}{245}a^{19}+\frac{3}{245}a^{18}-\frac{1}{245}a^{17}+\frac{3}{245}a^{15}-\frac{16}{245}a^{14}-\frac{6}{245}a^{13}-\frac{3}{49}a^{12}+\frac{20}{49}a^{11}-\frac{3}{7}a^{10}+\frac{3}{49}a^{9}-\frac{2}{49}a^{8}-\frac{19}{245}a^{7}+\frac{4}{35}a^{6}-\frac{106}{245}a^{5}+\frac{3}{7}a^{4}+\frac{3}{245}a^{3}-\frac{86}{245}a^{2}-\frac{46}{245}a+\frac{8}{49}$, $\frac{1}{245}a^{20}-\frac{3}{245}a^{18}+\frac{3}{245}a^{17}+\frac{3}{245}a^{16}+\frac{17}{245}a^{15}+\frac{1}{35}a^{14}+\frac{3}{245}a^{13}+\frac{1}{49}a^{12}+\frac{17}{49}a^{11}+\frac{17}{49}a^{10}-\frac{18}{49}a^{9}+\frac{81}{245}a^{8}+\frac{17}{49}a^{7}-\frac{78}{245}a^{6}-\frac{67}{245}a^{5}-\frac{67}{245}a^{4}-\frac{53}{245}a^{3}-\frac{68}{245}a^{2}-\frac{67}{245}a-\frac{10}{49}$, $\frac{1}{1225}a^{21}+\frac{2}{1225}a^{20}+\frac{2}{1225}a^{19}-\frac{16}{1225}a^{18}-\frac{17}{1225}a^{17}+\frac{2}{1225}a^{16}+\frac{4}{175}a^{15}-\frac{12}{175}a^{14}-\frac{3}{49}a^{13}+\frac{11}{245}a^{12}-\frac{66}{245}a^{11}+\frac{86}{245}a^{10}-\frac{409}{1225}a^{9}+\frac{582}{1225}a^{8}-\frac{38}{1225}a^{7}+\frac{274}{1225}a^{6}-\frac{17}{1225}a^{5}+\frac{317}{1225}a^{4}+\frac{58}{1225}a^{3}-\frac{409}{1225}a^{2}+\frac{4}{245}a+\frac{11}{49}$, $\frac{1}{1225}a^{22}-\frac{2}{1225}a^{20}+\frac{1}{245}a^{18}+\frac{16}{1225}a^{17}-\frac{11}{1225}a^{16}+\frac{1}{49}a^{15}-\frac{52}{1225}a^{14}+\frac{2}{49}a^{13}-\frac{8}{245}a^{12}-\frac{117}{245}a^{11}+\frac{131}{1225}a^{10}-\frac{9}{49}a^{9}-\frac{527}{1225}a^{8}-\frac{41}{245}a^{7}+\frac{11}{49}a^{6}-\frac{544}{1225}a^{5}+\frac{264}{1225}a^{4}-\frac{72}{245}a^{3}+\frac{74}{175}a^{2}+\frac{101}{245}a+\frac{3}{49}$, $\frac{1}{1225}a^{23}-\frac{1}{1225}a^{20}-\frac{1}{1225}a^{19}+\frac{4}{1225}a^{18}-\frac{3}{245}a^{17}+\frac{2}{175}a^{16}-\frac{76}{1225}a^{15}+\frac{6}{175}a^{14}+\frac{6}{245}a^{13}-\frac{554}{1225}a^{11}+\frac{1}{35}a^{10}+\frac{71}{245}a^{9}-\frac{396}{1225}a^{8}-\frac{386}{1225}a^{7}-\frac{201}{1225}a^{6}+\frac{87}{245}a^{5}-\frac{9}{25}a^{4}-\frac{321}{1225}a^{3}-\frac{303}{1225}a^{2}-\frac{4}{35}a+\frac{23}{49}$, $\frac{1}{8575}a^{24}+\frac{2}{8575}a^{23}-\frac{2}{8575}a^{22}-\frac{2}{8575}a^{21}-\frac{1}{8575}a^{20}+\frac{1}{1715}a^{19}+\frac{1}{175}a^{18}+\frac{69}{8575}a^{17}+\frac{1}{1225}a^{16}-\frac{138}{8575}a^{15}+\frac{327}{8575}a^{14}+\frac{78}{1715}a^{13}-\frac{254}{8575}a^{12}-\frac{2223}{8575}a^{11}-\frac{617}{8575}a^{10}-\frac{1027}{8575}a^{9}-\frac{208}{1225}a^{8}-\frac{229}{1715}a^{7}-\frac{138}{1225}a^{6}-\frac{2566}{8575}a^{5}+\frac{962}{8575}a^{4}+\frac{3442}{8575}a^{3}+\frac{3202}{8575}a^{2}+\frac{129}{1715}a-\frac{152}{343}$, $\frac{1}{317275}a^{25}+\frac{13}{317275}a^{24}+\frac{34}{317275}a^{23}+\frac{88}{317275}a^{22}-\frac{1}{8575}a^{21}+\frac{78}{317275}a^{20}+\frac{587}{317275}a^{19}-\frac{1212}{317275}a^{18}+\frac{4336}{317275}a^{17}+\frac{818}{63455}a^{16}+\frac{4493}{317275}a^{15}+\frac{3777}{317275}a^{14}-\frac{7654}{317275}a^{13}-\frac{18842}{317275}a^{12}-\frac{48226}{317275}a^{11}-\frac{157572}{317275}a^{10}+\frac{96118}{317275}a^{9}+\frac{153723}{317275}a^{8}-\frac{96343}{317275}a^{7}+\frac{105423}{317275}a^{6}+\frac{20336}{317275}a^{5}-\frac{20536}{63455}a^{4}-\frac{41872}{317275}a^{3}+\frac{19067}{317275}a^{2}-\frac{11619}{63455}a+\frac{3970}{12691}$, $\frac{1}{239902679140075}a^{26}-\frac{372079181}{239902679140075}a^{25}-\frac{1669085671}{47980535828015}a^{24}-\frac{13096528929}{239902679140075}a^{23}+\frac{4060398581}{47980535828015}a^{22}+\frac{27458434343}{239902679140075}a^{21}-\frac{17153736906}{47980535828015}a^{20}+\frac{37491778448}{239902679140075}a^{19}+\frac{19888439}{31880754703}a^{18}-\frac{3125399970408}{239902679140075}a^{17}-\frac{1009391376933}{239902679140075}a^{16}-\frac{224447750206}{5579132073025}a^{15}-\frac{8921329677032}{239902679140075}a^{14}+\frac{15368694854459}{239902679140075}a^{13}+\frac{2721791037421}{47980535828015}a^{12}+\frac{9808378115153}{34271811305725}a^{11}-\frac{3495246989928}{9596107165603}a^{10}-\frac{65723651702222}{239902679140075}a^{9}+\frac{89431643986}{195838921747}a^{8}+\frac{15412654789428}{239902679140075}a^{7}+\frac{21576088607649}{47980535828015}a^{6}-\frac{1952172573088}{5851284857075}a^{5}-\frac{4439796119548}{239902679140075}a^{4}-\frac{15902389951734}{34271811305725}a^{3}+\frac{107187720306407}{239902679140075}a^{2}-\frac{10224426888601}{47980535828015}a-\frac{3361885110408}{9596107165603}$, $\frac{1}{25\!\cdots\!25}a^{27}-\frac{314849447}{63\!\cdots\!25}a^{26}-\frac{47\!\cdots\!94}{12\!\cdots\!75}a^{25}+\frac{12\!\cdots\!86}{25\!\cdots\!25}a^{24}-\frac{15\!\cdots\!49}{51\!\cdots\!25}a^{23}+\frac{72\!\cdots\!27}{25\!\cdots\!25}a^{22}+\frac{12\!\cdots\!07}{51\!\cdots\!25}a^{21}-\frac{34\!\cdots\!04}{25\!\cdots\!25}a^{20}-\frac{18\!\cdots\!62}{15\!\cdots\!75}a^{19}+\frac{52\!\cdots\!64}{51\!\cdots\!25}a^{18}-\frac{21\!\cdots\!47}{51\!\cdots\!25}a^{17}+\frac{36\!\cdots\!28}{25\!\cdots\!25}a^{16}+\frac{36\!\cdots\!11}{25\!\cdots\!25}a^{15}-\frac{23\!\cdots\!06}{25\!\cdots\!25}a^{14}+\frac{36\!\cdots\!72}{10\!\cdots\!85}a^{13}-\frac{11\!\cdots\!69}{25\!\cdots\!25}a^{12}-\frac{44\!\cdots\!07}{10\!\cdots\!85}a^{11}-\frac{11\!\cdots\!53}{25\!\cdots\!25}a^{10}+\frac{11\!\cdots\!33}{10\!\cdots\!85}a^{9}-\frac{41\!\cdots\!59}{25\!\cdots\!25}a^{8}-\frac{12\!\cdots\!24}{51\!\cdots\!25}a^{7}-\frac{45\!\cdots\!31}{14\!\cdots\!25}a^{6}-\frac{14\!\cdots\!07}{51\!\cdots\!25}a^{5}-\frac{32\!\cdots\!31}{37\!\cdots\!75}a^{4}+\frac{45\!\cdots\!27}{51\!\cdots\!25}a^{3}-\frac{22\!\cdots\!49}{25\!\cdots\!25}a^{2}+\frac{42\!\cdots\!72}{10\!\cdots\!85}a+\frac{29\!\cdots\!82}{10\!\cdots\!85}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$, $7$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{40\!\cdots\!91}{25\!\cdots\!25}a^{27}-\frac{52\!\cdots\!37}{63\!\cdots\!25}a^{26}+\frac{11\!\cdots\!51}{51\!\cdots\!25}a^{25}+\frac{70\!\cdots\!11}{25\!\cdots\!25}a^{24}-\frac{83\!\cdots\!67}{85\!\cdots\!25}a^{23}+\frac{20\!\cdots\!97}{25\!\cdots\!25}a^{22}+\frac{22\!\cdots\!64}{51\!\cdots\!25}a^{21}-\frac{19\!\cdots\!04}{25\!\cdots\!25}a^{20}-\frac{32\!\cdots\!34}{20\!\cdots\!75}a^{19}+\frac{53\!\cdots\!68}{51\!\cdots\!25}a^{18}+\frac{34\!\cdots\!83}{51\!\cdots\!25}a^{17}-\frac{25\!\cdots\!77}{25\!\cdots\!25}a^{16}+\frac{54\!\cdots\!71}{25\!\cdots\!25}a^{15}-\frac{22\!\cdots\!46}{25\!\cdots\!25}a^{14}+\frac{65\!\cdots\!98}{51\!\cdots\!25}a^{13}+\frac{34\!\cdots\!81}{25\!\cdots\!25}a^{12}-\frac{76\!\cdots\!78}{51\!\cdots\!25}a^{11}+\frac{13\!\cdots\!17}{25\!\cdots\!25}a^{10}-\frac{88\!\cdots\!18}{51\!\cdots\!25}a^{9}-\frac{68\!\cdots\!59}{25\!\cdots\!25}a^{8}+\frac{16\!\cdots\!46}{51\!\cdots\!25}a^{7}+\frac{79\!\cdots\!97}{51\!\cdots\!25}a^{6}+\frac{50\!\cdots\!53}{51\!\cdots\!25}a^{5}+\frac{15\!\cdots\!54}{37\!\cdots\!75}a^{4}-\frac{28\!\cdots\!54}{51\!\cdots\!25}a^{3}-\frac{94\!\cdots\!99}{25\!\cdots\!25}a^{2}+\frac{40\!\cdots\!41}{10\!\cdots\!85}a+\frac{47\!\cdots\!67}{10\!\cdots\!85}$, $\frac{90\!\cdots\!11}{70\!\cdots\!25}a^{27}-\frac{25\!\cdots\!04}{25\!\cdots\!25}a^{26}+\frac{19\!\cdots\!31}{51\!\cdots\!25}a^{25}-\frac{11\!\cdots\!13}{25\!\cdots\!25}a^{24}-\frac{75\!\cdots\!33}{11\!\cdots\!65}a^{23}+\frac{53\!\cdots\!19}{25\!\cdots\!25}a^{22}+\frac{63\!\cdots\!76}{51\!\cdots\!25}a^{21}-\frac{32\!\cdots\!08}{25\!\cdots\!25}a^{20}+\frac{16\!\cdots\!53}{74\!\cdots\!75}a^{19}-\frac{14\!\cdots\!73}{10\!\cdots\!85}a^{18}+\frac{78\!\cdots\!39}{51\!\cdots\!25}a^{17}-\frac{17\!\cdots\!94}{25\!\cdots\!25}a^{16}+\frac{83\!\cdots\!37}{25\!\cdots\!25}a^{15}-\frac{35\!\cdots\!07}{25\!\cdots\!25}a^{14}+\frac{52\!\cdots\!58}{20\!\cdots\!37}a^{13}-\frac{32\!\cdots\!73}{25\!\cdots\!25}a^{12}-\frac{32\!\cdots\!92}{51\!\cdots\!25}a^{11}+\frac{53\!\cdots\!09}{25\!\cdots\!25}a^{10}-\frac{29\!\cdots\!53}{51\!\cdots\!25}a^{9}+\frac{22\!\cdots\!12}{42\!\cdots\!25}a^{8}+\frac{12\!\cdots\!48}{10\!\cdots\!85}a^{7}-\frac{14\!\cdots\!57}{51\!\cdots\!25}a^{6}+\frac{24\!\cdots\!64}{51\!\cdots\!25}a^{5}-\frac{39\!\cdots\!16}{53\!\cdots\!25}a^{4}-\frac{10\!\cdots\!89}{51\!\cdots\!25}a^{3}+\frac{28\!\cdots\!12}{42\!\cdots\!25}a^{2}-\frac{13\!\cdots\!77}{10\!\cdots\!85}a-\frac{13\!\cdots\!91}{10\!\cdots\!85}$, $\frac{79\!\cdots\!71}{37\!\cdots\!75}a^{27}-\frac{48\!\cdots\!67}{37\!\cdots\!75}a^{26}+\frac{35\!\cdots\!93}{74\!\cdots\!75}a^{25}-\frac{13\!\cdots\!64}{37\!\cdots\!75}a^{24}-\frac{53\!\cdots\!37}{74\!\cdots\!75}a^{23}+\frac{25\!\cdots\!12}{37\!\cdots\!75}a^{22}+\frac{23\!\cdots\!06}{14\!\cdots\!55}a^{21}-\frac{43\!\cdots\!66}{41\!\cdots\!75}a^{20}+\frac{16\!\cdots\!19}{74\!\cdots\!75}a^{19}-\frac{80\!\cdots\!66}{20\!\cdots\!75}a^{18}+\frac{37\!\cdots\!13}{74\!\cdots\!75}a^{17}-\frac{93\!\cdots\!82}{37\!\cdots\!75}a^{16}+\frac{27\!\cdots\!91}{37\!\cdots\!75}a^{15}-\frac{85\!\cdots\!26}{37\!\cdots\!75}a^{14}+\frac{93\!\cdots\!89}{29\!\cdots\!91}a^{13}-\frac{24\!\cdots\!92}{53\!\cdots\!25}a^{12}+\frac{41\!\cdots\!47}{74\!\cdots\!75}a^{11}-\frac{24\!\cdots\!93}{37\!\cdots\!75}a^{10}-\frac{21\!\cdots\!02}{74\!\cdots\!75}a^{9}+\frac{60\!\cdots\!71}{37\!\cdots\!75}a^{8}-\frac{30\!\cdots\!29}{74\!\cdots\!75}a^{7}-\frac{41\!\cdots\!43}{74\!\cdots\!75}a^{6}+\frac{92\!\cdots\!33}{74\!\cdots\!75}a^{5}-\frac{50\!\cdots\!61}{53\!\cdots\!25}a^{4}+\frac{38\!\cdots\!49}{74\!\cdots\!75}a^{3}-\frac{18\!\cdots\!29}{37\!\cdots\!75}a^{2}-\frac{13\!\cdots\!96}{26\!\cdots\!35}a+\frac{18\!\cdots\!16}{21\!\cdots\!65}$, $\frac{46\!\cdots\!42}{25\!\cdots\!25}a^{27}-\frac{30\!\cdots\!69}{25\!\cdots\!25}a^{26}-\frac{16\!\cdots\!06}{51\!\cdots\!25}a^{25}+\frac{49\!\cdots\!17}{25\!\cdots\!25}a^{24}-\frac{35\!\cdots\!48}{51\!\cdots\!25}a^{23}-\frac{23\!\cdots\!41}{25\!\cdots\!25}a^{22}+\frac{23\!\cdots\!94}{51\!\cdots\!25}a^{21}+\frac{44\!\cdots\!32}{25\!\cdots\!25}a^{20}-\frac{10\!\cdots\!51}{14\!\cdots\!55}a^{19}+\frac{77\!\cdots\!72}{12\!\cdots\!25}a^{18}+\frac{20\!\cdots\!78}{20\!\cdots\!37}a^{17}+\frac{50\!\cdots\!23}{70\!\cdots\!25}a^{16}-\frac{33\!\cdots\!63}{25\!\cdots\!25}a^{15}-\frac{11\!\cdots\!32}{25\!\cdots\!25}a^{14}-\frac{31\!\cdots\!42}{51\!\cdots\!25}a^{13}+\frac{13\!\cdots\!57}{25\!\cdots\!25}a^{12}+\frac{89\!\cdots\!49}{10\!\cdots\!85}a^{11}+\frac{44\!\cdots\!99}{25\!\cdots\!25}a^{10}-\frac{55\!\cdots\!23}{10\!\cdots\!85}a^{9}-\frac{43\!\cdots\!53}{25\!\cdots\!25}a^{8}-\frac{45\!\cdots\!81}{51\!\cdots\!25}a^{7}+\frac{43\!\cdots\!05}{20\!\cdots\!37}a^{6}+\frac{65\!\cdots\!09}{10\!\cdots\!85}a^{5}+\frac{14\!\cdots\!73}{37\!\cdots\!75}a^{4}-\frac{24\!\cdots\!51}{51\!\cdots\!25}a^{3}-\frac{57\!\cdots\!78}{25\!\cdots\!25}a^{2}+\frac{11\!\cdots\!59}{25\!\cdots\!85}a+\frac{30\!\cdots\!57}{28\!\cdots\!05}$, $\frac{74\!\cdots\!46}{25\!\cdots\!25}a^{27}-\frac{31\!\cdots\!92}{25\!\cdots\!25}a^{26}+\frac{11\!\cdots\!67}{51\!\cdots\!25}a^{25}+\frac{41\!\cdots\!66}{42\!\cdots\!25}a^{24}-\frac{61\!\cdots\!53}{51\!\cdots\!25}a^{23}-\frac{77\!\cdots\!23}{25\!\cdots\!25}a^{22}+\frac{45\!\cdots\!19}{51\!\cdots\!25}a^{21}-\frac{35\!\cdots\!64}{25\!\cdots\!25}a^{20}-\frac{19\!\cdots\!48}{74\!\cdots\!75}a^{19}+\frac{33\!\cdots\!19}{51\!\cdots\!25}a^{18}+\frac{38\!\cdots\!76}{51\!\cdots\!25}a^{17}-\frac{55\!\cdots\!52}{25\!\cdots\!25}a^{16}-\frac{17\!\cdots\!09}{25\!\cdots\!25}a^{15}-\frac{21\!\cdots\!51}{25\!\cdots\!25}a^{14}+\frac{80\!\cdots\!89}{51\!\cdots\!25}a^{13}+\frac{53\!\cdots\!21}{25\!\cdots\!25}a^{12}+\frac{11\!\cdots\!36}{51\!\cdots\!25}a^{11}-\frac{81\!\cdots\!53}{25\!\cdots\!25}a^{10}-\frac{15\!\cdots\!53}{51\!\cdots\!25}a^{9}-\frac{90\!\cdots\!44}{25\!\cdots\!25}a^{8}+\frac{21\!\cdots\!61}{51\!\cdots\!25}a^{7}+\frac{25\!\cdots\!33}{51\!\cdots\!25}a^{6}-\frac{22\!\cdots\!19}{51\!\cdots\!25}a^{5}-\frac{28\!\cdots\!96}{37\!\cdots\!75}a^{4}+\frac{30\!\cdots\!79}{51\!\cdots\!25}a^{3}+\frac{71\!\cdots\!21}{25\!\cdots\!25}a^{2}-\frac{21\!\cdots\!56}{10\!\cdots\!85}a+\frac{22\!\cdots\!42}{10\!\cdots\!85}$, $\frac{76\!\cdots\!93}{25\!\cdots\!25}a^{27}-\frac{12\!\cdots\!13}{70\!\cdots\!25}a^{26}+\frac{27\!\cdots\!38}{51\!\cdots\!25}a^{25}+\frac{45\!\cdots\!58}{25\!\cdots\!25}a^{24}-\frac{10\!\cdots\!73}{51\!\cdots\!25}a^{23}+\frac{10\!\cdots\!61}{63\!\cdots\!25}a^{22}+\frac{38\!\cdots\!97}{51\!\cdots\!25}a^{21}-\frac{54\!\cdots\!27}{25\!\cdots\!25}a^{20}+\frac{15\!\cdots\!93}{14\!\cdots\!55}a^{19}+\frac{96\!\cdots\!74}{51\!\cdots\!25}a^{18}-\frac{60\!\cdots\!58}{51\!\cdots\!25}a^{17}-\frac{56\!\cdots\!51}{25\!\cdots\!25}a^{16}+\frac{19\!\cdots\!63}{25\!\cdots\!25}a^{15}-\frac{46\!\cdots\!43}{25\!\cdots\!25}a^{14}+\frac{64\!\cdots\!19}{51\!\cdots\!25}a^{13}+\frac{11\!\cdots\!48}{63\!\cdots\!25}a^{12}-\frac{12\!\cdots\!46}{51\!\cdots\!25}a^{11}+\frac{60\!\cdots\!36}{25\!\cdots\!25}a^{10}-\frac{18\!\cdots\!24}{51\!\cdots\!25}a^{9}-\frac{13\!\cdots\!58}{71\!\cdots\!25}a^{8}+\frac{38\!\cdots\!11}{51\!\cdots\!25}a^{7}-\frac{13\!\cdots\!34}{51\!\cdots\!25}a^{6}+\frac{67\!\cdots\!72}{51\!\cdots\!25}a^{5}+\frac{76\!\cdots\!61}{53\!\cdots\!25}a^{4}-\frac{57\!\cdots\!16}{51\!\cdots\!25}a^{3}+\frac{12\!\cdots\!53}{25\!\cdots\!25}a^{2}+\frac{62\!\cdots\!57}{10\!\cdots\!85}a-\frac{16\!\cdots\!84}{10\!\cdots\!85}$, $\frac{15\!\cdots\!62}{25\!\cdots\!25}a^{27}-\frac{88\!\cdots\!19}{25\!\cdots\!25}a^{26}+\frac{59\!\cdots\!01}{58\!\cdots\!25}a^{25}+\frac{94\!\cdots\!92}{25\!\cdots\!25}a^{24}-\frac{17\!\cdots\!46}{51\!\cdots\!25}a^{23}+\frac{50\!\cdots\!39}{25\!\cdots\!25}a^{22}+\frac{71\!\cdots\!96}{51\!\cdots\!25}a^{21}-\frac{91\!\cdots\!53}{25\!\cdots\!25}a^{20}+\frac{13\!\cdots\!34}{74\!\cdots\!75}a^{19}+\frac{77\!\cdots\!63}{51\!\cdots\!25}a^{18}+\frac{11\!\cdots\!19}{51\!\cdots\!25}a^{17}-\frac{92\!\cdots\!64}{25\!\cdots\!25}a^{16}+\frac{27\!\cdots\!32}{25\!\cdots\!25}a^{15}-\frac{10\!\cdots\!67}{25\!\cdots\!25}a^{14}+\frac{15\!\cdots\!38}{51\!\cdots\!25}a^{13}+\frac{54\!\cdots\!57}{25\!\cdots\!25}a^{12}-\frac{58\!\cdots\!08}{85\!\cdots\!25}a^{11}+\frac{96\!\cdots\!29}{25\!\cdots\!25}a^{10}-\frac{10\!\cdots\!86}{12\!\cdots\!75}a^{9}-\frac{10\!\cdots\!38}{25\!\cdots\!25}a^{8}+\frac{54\!\cdots\!42}{51\!\cdots\!25}a^{7}+\frac{32\!\cdots\!41}{51\!\cdots\!25}a^{6}+\frac{37\!\cdots\!89}{51\!\cdots\!25}a^{5}-\frac{75\!\cdots\!72}{37\!\cdots\!75}a^{4}-\frac{88\!\cdots\!71}{51\!\cdots\!25}a^{3}+\frac{12\!\cdots\!37}{25\!\cdots\!25}a^{2}+\frac{83\!\cdots\!32}{10\!\cdots\!85}a+\frac{51\!\cdots\!17}{28\!\cdots\!05}$, $\frac{221990904}{8191798799905}a^{27}-\frac{1208401713}{8191798799905}a^{26}+\frac{18275756473}{40958993999525}a^{25}+\frac{17761221759}{40958993999525}a^{24}-\frac{19315303783}{8191798799905}a^{23}+\frac{187035903807}{40958993999525}a^{22}+\frac{356226522178}{40958993999525}a^{21}-\frac{956588436127}{40958993999525}a^{20}+\frac{12272334029}{835897836725}a^{19}+\frac{57814406036}{1106999837825}a^{18}-\frac{4138606663662}{40958993999525}a^{17}+\frac{1283964283797}{40958993999525}a^{16}+\frac{3472246558853}{40958993999525}a^{15}-\frac{116285983677}{1638359759981}a^{14}+\frac{1672510144548}{40958993999525}a^{13}+\frac{23669994177569}{40958993999525}a^{12}-\frac{10546307213447}{8191798799905}a^{11}+\frac{634768046294}{952534744175}a^{10}-\frac{11117321294157}{40958993999525}a^{9}-\frac{65691949882}{40958993999525}a^{8}+\frac{99168016498526}{40958993999525}a^{7}-\frac{53127637364583}{40958993999525}a^{6}-\frac{32321403162992}{40958993999525}a^{5}+\frac{59967143716}{95922702575}a^{4}-\frac{84971670737407}{40958993999525}a^{3}+\frac{753567309081}{221399967565}a^{2}+\frac{23314847649623}{8191798799905}a-\frac{2435517117904}{1638359759981}$, $\frac{17\!\cdots\!38}{13\!\cdots\!15}a^{27}-\frac{49\!\cdots\!09}{51\!\cdots\!25}a^{26}+\frac{16\!\cdots\!17}{51\!\cdots\!25}a^{25}-\frac{13\!\cdots\!28}{10\!\cdots\!85}a^{24}-\frac{52\!\cdots\!53}{51\!\cdots\!25}a^{23}+\frac{42\!\cdots\!56}{51\!\cdots\!25}a^{22}+\frac{21\!\cdots\!22}{51\!\cdots\!25}a^{21}-\frac{53\!\cdots\!93}{51\!\cdots\!25}a^{20}+\frac{47\!\cdots\!63}{74\!\cdots\!75}a^{19}+\frac{18\!\cdots\!41}{58\!\cdots\!25}a^{18}+\frac{11\!\cdots\!19}{51\!\cdots\!25}a^{17}-\frac{24\!\cdots\!08}{51\!\cdots\!25}a^{16}+\frac{13\!\cdots\!87}{51\!\cdots\!25}a^{15}-\frac{35\!\cdots\!31}{51\!\cdots\!25}a^{14}+\frac{11\!\cdots\!67}{51\!\cdots\!25}a^{13}-\frac{99\!\cdots\!42}{20\!\cdots\!37}a^{12}-\frac{24\!\cdots\!43}{51\!\cdots\!25}a^{11}-\frac{10\!\cdots\!19}{51\!\cdots\!25}a^{10}-\frac{11\!\cdots\!13}{51\!\cdots\!25}a^{9}+\frac{26\!\cdots\!62}{51\!\cdots\!25}a^{8}+\frac{20\!\cdots\!61}{51\!\cdots\!25}a^{7}-\frac{15\!\cdots\!91}{51\!\cdots\!25}a^{6}-\frac{33\!\cdots\!42}{12\!\cdots\!75}a^{5}-\frac{41\!\cdots\!69}{74\!\cdots\!75}a^{4}+\frac{29\!\cdots\!87}{51\!\cdots\!25}a^{3}+\frac{30\!\cdots\!03}{51\!\cdots\!25}a^{2}-\frac{40\!\cdots\!78}{10\!\cdots\!85}a+\frac{18\!\cdots\!30}{20\!\cdots\!37}$, $\frac{12\!\cdots\!04}{25\!\cdots\!25}a^{27}-\frac{69\!\cdots\!13}{25\!\cdots\!25}a^{26}+\frac{37\!\cdots\!36}{51\!\cdots\!25}a^{25}+\frac{20\!\cdots\!24}{25\!\cdots\!25}a^{24}-\frac{16\!\cdots\!63}{51\!\cdots\!25}a^{23}+\frac{10\!\cdots\!03}{25\!\cdots\!25}a^{22}+\frac{74\!\cdots\!44}{51\!\cdots\!25}a^{21}-\frac{69\!\cdots\!46}{25\!\cdots\!25}a^{20}-\frac{35\!\cdots\!97}{15\!\cdots\!75}a^{19}+\frac{46\!\cdots\!36}{12\!\cdots\!25}a^{18}+\frac{19\!\cdots\!49}{12\!\cdots\!75}a^{17}-\frac{12\!\cdots\!98}{25\!\cdots\!25}a^{16}+\frac{25\!\cdots\!94}{25\!\cdots\!25}a^{15}-\frac{80\!\cdots\!04}{25\!\cdots\!25}a^{14}+\frac{50\!\cdots\!49}{51\!\cdots\!25}a^{13}+\frac{10\!\cdots\!79}{25\!\cdots\!25}a^{12}-\frac{54\!\cdots\!17}{85\!\cdots\!25}a^{11}-\frac{10\!\cdots\!67}{25\!\cdots\!25}a^{10}-\frac{13\!\cdots\!44}{51\!\cdots\!25}a^{9}-\frac{27\!\cdots\!16}{25\!\cdots\!25}a^{8}+\frac{67\!\cdots\!42}{51\!\cdots\!25}a^{7}+\frac{29\!\cdots\!12}{51\!\cdots\!25}a^{6}-\frac{18\!\cdots\!18}{51\!\cdots\!25}a^{5}+\frac{20\!\cdots\!21}{37\!\cdots\!75}a^{4}-\frac{10\!\cdots\!02}{51\!\cdots\!25}a^{3}+\frac{30\!\cdots\!79}{25\!\cdots\!25}a^{2}+\frac{43\!\cdots\!39}{25\!\cdots\!85}a-\frac{43\!\cdots\!87}{10\!\cdots\!85}$, $\frac{49\!\cdots\!48}{29\!\cdots\!25}a^{27}-\frac{45\!\cdots\!49}{63\!\cdots\!25}a^{26}+\frac{35\!\cdots\!91}{51\!\cdots\!25}a^{25}+\frac{22\!\cdots\!12}{25\!\cdots\!25}a^{24}-\frac{66\!\cdots\!22}{51\!\cdots\!25}a^{23}-\frac{96\!\cdots\!96}{25\!\cdots\!25}a^{22}+\frac{43\!\cdots\!36}{51\!\cdots\!25}a^{21}+\frac{75\!\cdots\!42}{25\!\cdots\!25}a^{20}-\frac{51\!\cdots\!77}{14\!\cdots\!55}a^{19}+\frac{19\!\cdots\!99}{10\!\cdots\!85}a^{18}+\frac{44\!\cdots\!49}{51\!\cdots\!25}a^{17}-\frac{13\!\cdots\!09}{25\!\cdots\!25}a^{16}-\frac{31\!\cdots\!63}{25\!\cdots\!25}a^{15}-\frac{11\!\cdots\!67}{25\!\cdots\!25}a^{14}+\frac{17\!\cdots\!02}{20\!\cdots\!37}a^{13}+\frac{74\!\cdots\!27}{25\!\cdots\!25}a^{12}+\frac{15\!\cdots\!66}{51\!\cdots\!25}a^{11}-\frac{15\!\cdots\!31}{25\!\cdots\!25}a^{10}-\frac{18\!\cdots\!18}{51\!\cdots\!25}a^{9}-\frac{29\!\cdots\!18}{25\!\cdots\!25}a^{8}+\frac{26\!\cdots\!54}{51\!\cdots\!25}a^{7}+\frac{62\!\cdots\!48}{51\!\cdots\!25}a^{6}-\frac{46\!\cdots\!96}{51\!\cdots\!25}a^{5}-\frac{33\!\cdots\!07}{37\!\cdots\!75}a^{4}+\frac{29\!\cdots\!43}{51\!\cdots\!25}a^{3}+\frac{64\!\cdots\!96}{70\!\cdots\!25}a^{2}-\frac{67\!\cdots\!03}{10\!\cdots\!85}a-\frac{10\!\cdots\!01}{10\!\cdots\!85}$, $\frac{84\!\cdots\!83}{25\!\cdots\!25}a^{27}-\frac{49\!\cdots\!66}{25\!\cdots\!25}a^{26}+\frac{25\!\cdots\!72}{51\!\cdots\!25}a^{25}+\frac{12\!\cdots\!58}{25\!\cdots\!25}a^{24}-\frac{13\!\cdots\!82}{51\!\cdots\!25}a^{23}-\frac{25\!\cdots\!84}{25\!\cdots\!25}a^{22}+\frac{87\!\cdots\!18}{10\!\cdots\!85}a^{21}-\frac{44\!\cdots\!62}{25\!\cdots\!25}a^{20}-\frac{80\!\cdots\!68}{29\!\cdots\!91}a^{19}+\frac{99\!\cdots\!13}{51\!\cdots\!25}a^{18}+\frac{16\!\cdots\!83}{51\!\cdots\!25}a^{17}+\frac{54\!\cdots\!29}{25\!\cdots\!25}a^{16}+\frac{29\!\cdots\!93}{25\!\cdots\!25}a^{15}-\frac{78\!\cdots\!73}{25\!\cdots\!25}a^{14}+\frac{19\!\cdots\!33}{51\!\cdots\!25}a^{13}+\frac{10\!\cdots\!43}{25\!\cdots\!25}a^{12}+\frac{55\!\cdots\!34}{20\!\cdots\!37}a^{11}+\frac{56\!\cdots\!76}{25\!\cdots\!25}a^{10}-\frac{44\!\cdots\!91}{51\!\cdots\!25}a^{9}-\frac{30\!\cdots\!27}{25\!\cdots\!25}a^{8}+\frac{22\!\cdots\!86}{51\!\cdots\!25}a^{7}+\frac{93\!\cdots\!77}{10\!\cdots\!85}a^{6}+\frac{64\!\cdots\!18}{51\!\cdots\!25}a^{5}+\frac{20\!\cdots\!17}{12\!\cdots\!75}a^{4}-\frac{97\!\cdots\!98}{51\!\cdots\!25}a^{3}-\frac{16\!\cdots\!17}{25\!\cdots\!25}a^{2}+\frac{95\!\cdots\!31}{23\!\cdots\!33}a-\frac{10\!\cdots\!64}{10\!\cdots\!85}$, $\frac{90\!\cdots\!76}{25\!\cdots\!25}a^{27}-\frac{26\!\cdots\!42}{25\!\cdots\!25}a^{26}+\frac{36\!\cdots\!36}{51\!\cdots\!25}a^{25}+\frac{46\!\cdots\!31}{25\!\cdots\!25}a^{24}-\frac{10\!\cdots\!29}{10\!\cdots\!85}a^{23}-\frac{73\!\cdots\!53}{25\!\cdots\!25}a^{22}+\frac{52\!\cdots\!11}{51\!\cdots\!25}a^{21}+\frac{17\!\cdots\!21}{25\!\cdots\!25}a^{20}-\frac{26\!\cdots\!86}{74\!\cdots\!75}a^{19}+\frac{32\!\cdots\!22}{10\!\cdots\!85}a^{18}+\frac{54\!\cdots\!78}{51\!\cdots\!25}a^{17}+\frac{97\!\cdots\!68}{25\!\cdots\!25}a^{16}+\frac{80\!\cdots\!16}{25\!\cdots\!25}a^{15}-\frac{10\!\cdots\!61}{25\!\cdots\!25}a^{14}-\frac{21\!\cdots\!62}{51\!\cdots\!25}a^{13}+\frac{10\!\cdots\!26}{25\!\cdots\!25}a^{12}-\frac{79\!\cdots\!01}{51\!\cdots\!25}a^{11}+\frac{14\!\cdots\!47}{42\!\cdots\!25}a^{10}+\frac{14\!\cdots\!24}{51\!\cdots\!25}a^{9}-\frac{35\!\cdots\!34}{25\!\cdots\!25}a^{8}+\frac{28\!\cdots\!37}{10\!\cdots\!85}a^{7}+\frac{40\!\cdots\!64}{51\!\cdots\!25}a^{6}+\frac{26\!\cdots\!53}{85\!\cdots\!25}a^{5}+\frac{10\!\cdots\!23}{86\!\cdots\!25}a^{4}-\frac{87\!\cdots\!02}{85\!\cdots\!25}a^{3}-\frac{19\!\cdots\!14}{25\!\cdots\!25}a^{2}+\frac{27\!\cdots\!47}{11\!\cdots\!65}a+\frac{26\!\cdots\!52}{10\!\cdots\!85}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4093870424302.4214 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot 4093870424302.4214 \cdot 1}{2\cdot\sqrt{20444429365013571404907915184985572799247638801}}\cr\approx \mathstrut & 2.13961068156221 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 6*x^27 + 18*x^26 + 6*x^25 - 69*x^24 + 47*x^23 + 257*x^22 - 674*x^21 + 321*x^20 + 545*x^19 - 15*x^18 - 692*x^17 + 1854*x^16 - 6800*x^15 + 5094*x^14 + 6261*x^13 - 5929*x^12 + 6262*x^11 - 14458*x^10 - 7839*x^9 + 27851*x^8 - 6775*x^7 + 6005*x^6 - 1487*x^5 - 35142*x^4 + 22011*x^3 + 18446*x^2 - 12525*x + 2675);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{28}$ (as 28T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 56
The 17 conjugacy class representatives for $D_{28}$
Character table for $D_{28}$

Intermediate fields

\(\Q(\sqrt{-7}) \), 4.0.22001.1, 7.1.31047965207.1, 14.0.6747833004465577869943.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: deg 28
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.7.0.1}{7} }^{4}$ $28$ ${\href{/padicField/5.2.0.1}{2} }^{14}$ R ${\href{/padicField/11.14.0.1}{14} }^{2}$ $28$ $28$ $28$ ${\href{/padicField/23.14.0.1}{14} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{13}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{7}$ ${\href{/padicField/37.2.0.1}{2} }^{13}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{14}$ ${\href{/padicField/43.2.0.1}{2} }^{13}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{7}$ ${\href{/padicField/53.14.0.1}{14} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{14}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
\(449\) Copy content Toggle raw display $\Q_{449}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{449}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.449.2t1.a.a$1$ $ 449 $ \(\Q(\sqrt{449}) \) $C_2$ (as 2T1) $1$ $1$
1.3143.2t1.a.a$1$ $ 7 \cdot 449 $ \(\Q(\sqrt{-3143}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.7.2t1.a.a$1$ $ 7 $ \(\Q(\sqrt{-7}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3143.4t3.c.a$2$ $ 7 \cdot 449 $ 4.2.1411207.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.3143.7t2.a.b$2$ $ 7 \cdot 449 $ 7.1.31047965207.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.3143.14t3.a.a$2$ $ 7 \cdot 449 $ 14.2.432825288429292066229201.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.3143.14t3.a.c$2$ $ 7 \cdot 449 $ 14.2.432825288429292066229201.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.3143.7t2.a.a$2$ $ 7 \cdot 449 $ 7.1.31047965207.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.3143.7t2.a.c$2$ $ 7 \cdot 449 $ 7.1.31047965207.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.3143.14t3.a.b$2$ $ 7 \cdot 449 $ 14.2.432825288429292066229201.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.3143.28t10.a.b$2$ $ 7 \cdot 449 $ 28.0.20444429365013571404907915184985572799247638801.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3143.28t10.a.c$2$ $ 7 \cdot 449 $ 28.0.20444429365013571404907915184985572799247638801.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3143.28t10.a.a$2$ $ 7 \cdot 449 $ 28.0.20444429365013571404907915184985572799247638801.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3143.28t10.a.d$2$ $ 7 \cdot 449 $ 28.0.20444429365013571404907915184985572799247638801.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3143.28t10.a.e$2$ $ 7 \cdot 449 $ 28.0.20444429365013571404907915184985572799247638801.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3143.28t10.a.f$2$ $ 7 \cdot 449 $ 28.0.20444429365013571404907915184985572799247638801.1 $D_{28}$ (as 28T10) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.