Normalized defining polynomial
\( x^{28} - 6 x^{27} + 18 x^{26} + 6 x^{25} - 69 x^{24} + 47 x^{23} + 257 x^{22} - 674 x^{21} + 321 x^{20} + 545 x^{19} - 15 x^{18} - 692 x^{17} + 1854 x^{16} - 6800 x^{15} + 5094 x^{14} + 6261 x^{13} - 5929 x^{12} + 6262 x^{11} - 14458 x^{10} - 7839 x^{9} + 27851 x^{8} - 6775 x^{7} + 6005 x^{6} - 1487 x^{5} - 35142 x^{4} + 22011 x^{3} + 18446 x^{2} - 12525 x + 2675 \)
Invariants
Degree: | $28$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(20444429365013571404907915184985572799247638801\)\(\medspace = 7^{14}\cdot 449^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $45.08$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 449$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{6} + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{35} a^{16} + \frac{1}{35} a^{13} + \frac{1}{7} a^{10} + \frac{1}{7} a^{7} + \frac{1}{35} a^{4} + \frac{1}{35} a$, $\frac{1}{35} a^{17} + \frac{1}{35} a^{14} + \frac{1}{7} a^{11} + \frac{1}{7} a^{8} + \frac{1}{35} a^{5} + \frac{1}{35} a^{2}$, $\frac{1}{35} a^{18} + \frac{1}{35} a^{15} + \frac{1}{7} a^{9} + \frac{11}{35} a^{6} + \frac{1}{35} a^{3} - \frac{1}{7}$, $\frac{1}{245} a^{19} + \frac{3}{245} a^{18} - \frac{1}{245} a^{17} + \frac{3}{245} a^{15} - \frac{16}{245} a^{14} - \frac{6}{245} a^{13} - \frac{3}{49} a^{12} + \frac{20}{49} a^{11} - \frac{3}{7} a^{10} + \frac{3}{49} a^{9} - \frac{2}{49} a^{8} - \frac{19}{245} a^{7} + \frac{4}{35} a^{6} - \frac{106}{245} a^{5} + \frac{3}{7} a^{4} + \frac{3}{245} a^{3} - \frac{86}{245} a^{2} - \frac{46}{245} a + \frac{8}{49}$, $\frac{1}{245} a^{20} - \frac{3}{245} a^{18} + \frac{3}{245} a^{17} + \frac{3}{245} a^{16} + \frac{17}{245} a^{15} + \frac{1}{35} a^{14} + \frac{3}{245} a^{13} + \frac{1}{49} a^{12} + \frac{17}{49} a^{11} + \frac{17}{49} a^{10} - \frac{18}{49} a^{9} + \frac{81}{245} a^{8} + \frac{17}{49} a^{7} - \frac{78}{245} a^{6} - \frac{67}{245} a^{5} - \frac{67}{245} a^{4} - \frac{53}{245} a^{3} - \frac{68}{245} a^{2} - \frac{67}{245} a - \frac{10}{49}$, $\frac{1}{1225} a^{21} + \frac{2}{1225} a^{20} + \frac{2}{1225} a^{19} - \frac{16}{1225} a^{18} - \frac{17}{1225} a^{17} + \frac{2}{1225} a^{16} + \frac{4}{175} a^{15} - \frac{12}{175} a^{14} - \frac{3}{49} a^{13} + \frac{11}{245} a^{12} - \frac{66}{245} a^{11} + \frac{86}{245} a^{10} - \frac{409}{1225} a^{9} + \frac{582}{1225} a^{8} - \frac{38}{1225} a^{7} + \frac{274}{1225} a^{6} - \frac{17}{1225} a^{5} + \frac{317}{1225} a^{4} + \frac{58}{1225} a^{3} - \frac{409}{1225} a^{2} + \frac{4}{245} a + \frac{11}{49}$, $\frac{1}{1225} a^{22} - \frac{2}{1225} a^{20} + \frac{1}{245} a^{18} + \frac{16}{1225} a^{17} - \frac{11}{1225} a^{16} + \frac{1}{49} a^{15} - \frac{52}{1225} a^{14} + \frac{2}{49} a^{13} - \frac{8}{245} a^{12} - \frac{117}{245} a^{11} + \frac{131}{1225} a^{10} - \frac{9}{49} a^{9} - \frac{527}{1225} a^{8} - \frac{41}{245} a^{7} + \frac{11}{49} a^{6} - \frac{544}{1225} a^{5} + \frac{264}{1225} a^{4} - \frac{72}{245} a^{3} + \frac{74}{175} a^{2} + \frac{101}{245} a + \frac{3}{49}$, $\frac{1}{1225} a^{23} - \frac{1}{1225} a^{20} - \frac{1}{1225} a^{19} + \frac{4}{1225} a^{18} - \frac{3}{245} a^{17} + \frac{2}{175} a^{16} - \frac{76}{1225} a^{15} + \frac{6}{175} a^{14} + \frac{6}{245} a^{13} - \frac{554}{1225} a^{11} + \frac{1}{35} a^{10} + \frac{71}{245} a^{9} - \frac{396}{1225} a^{8} - \frac{386}{1225} a^{7} - \frac{201}{1225} a^{6} + \frac{87}{245} a^{5} - \frac{9}{25} a^{4} - \frac{321}{1225} a^{3} - \frac{303}{1225} a^{2} - \frac{4}{35} a + \frac{23}{49}$, $\frac{1}{8575} a^{24} + \frac{2}{8575} a^{23} - \frac{2}{8575} a^{22} - \frac{2}{8575} a^{21} - \frac{1}{8575} a^{20} + \frac{1}{1715} a^{19} + \frac{1}{175} a^{18} + \frac{69}{8575} a^{17} + \frac{1}{1225} a^{16} - \frac{138}{8575} a^{15} + \frac{327}{8575} a^{14} + \frac{78}{1715} a^{13} - \frac{254}{8575} a^{12} - \frac{2223}{8575} a^{11} - \frac{617}{8575} a^{10} - \frac{1027}{8575} a^{9} - \frac{208}{1225} a^{8} - \frac{229}{1715} a^{7} - \frac{138}{1225} a^{6} - \frac{2566}{8575} a^{5} + \frac{962}{8575} a^{4} + \frac{3442}{8575} a^{3} + \frac{3202}{8575} a^{2} + \frac{129}{1715} a - \frac{152}{343}$, $\frac{1}{317275} a^{25} + \frac{13}{317275} a^{24} + \frac{34}{317275} a^{23} + \frac{88}{317275} a^{22} - \frac{1}{8575} a^{21} + \frac{78}{317275} a^{20} + \frac{587}{317275} a^{19} - \frac{1212}{317275} a^{18} + \frac{4336}{317275} a^{17} + \frac{818}{63455} a^{16} + \frac{4493}{317275} a^{15} + \frac{3777}{317275} a^{14} - \frac{7654}{317275} a^{13} - \frac{18842}{317275} a^{12} - \frac{48226}{317275} a^{11} - \frac{157572}{317275} a^{10} + \frac{96118}{317275} a^{9} + \frac{153723}{317275} a^{8} - \frac{96343}{317275} a^{7} + \frac{105423}{317275} a^{6} + \frac{20336}{317275} a^{5} - \frac{20536}{63455} a^{4} - \frac{41872}{317275} a^{3} + \frac{19067}{317275} a^{2} - \frac{11619}{63455} a + \frac{3970}{12691}$, $\frac{1}{239902679140075} a^{26} - \frac{372079181}{239902679140075} a^{25} - \frac{1669085671}{47980535828015} a^{24} - \frac{13096528929}{239902679140075} a^{23} + \frac{4060398581}{47980535828015} a^{22} + \frac{27458434343}{239902679140075} a^{21} - \frac{17153736906}{47980535828015} a^{20} + \frac{37491778448}{239902679140075} a^{19} + \frac{19888439}{31880754703} a^{18} - \frac{3125399970408}{239902679140075} a^{17} - \frac{1009391376933}{239902679140075} a^{16} - \frac{224447750206}{5579132073025} a^{15} - \frac{8921329677032}{239902679140075} a^{14} + \frac{15368694854459}{239902679140075} a^{13} + \frac{2721791037421}{47980535828015} a^{12} + \frac{9808378115153}{34271811305725} a^{11} - \frac{3495246989928}{9596107165603} a^{10} - \frac{65723651702222}{239902679140075} a^{9} + \frac{89431643986}{195838921747} a^{8} + \frac{15412654789428}{239902679140075} a^{7} + \frac{21576088607649}{47980535828015} a^{6} - \frac{1952172573088}{5851284857075} a^{5} - \frac{4439796119548}{239902679140075} a^{4} - \frac{15902389951734}{34271811305725} a^{3} + \frac{107187720306407}{239902679140075} a^{2} - \frac{10224426888601}{47980535828015} a - \frac{3361885110408}{9596107165603}$, $\frac{1}{25974637773290955737442125} a^{27} - \frac{314849447}{633527750568072091157125} a^{26} - \frac{47391558836009694}{120812268712981189476475} a^{25} + \frac{1260363234268205255186}{25974637773290955737442125} a^{24} - \frac{153098375144052646149}{5194927554658191147488425} a^{23} + \frac{7224169299395329353827}{25974637773290955737442125} a^{22} + \frac{129211431934504875307}{5194927554658191147488425} a^{21} - \frac{3414811189977577279004}{25974637773290955737442125} a^{20} - \frac{18689322019588240262}{15145561383843122878975} a^{19} + \frac{52533451903175870390964}{5194927554658191147488425} a^{18} - \frac{21160207840310393390447}{5194927554658191147488425} a^{17} + \frac{367336420210594628003828}{25974637773290955737442125} a^{16} + \frac{36727865296166722183411}{25974637773290955737442125} a^{15} - \frac{230460392031535652070606}{25974637773290955737442125} a^{14} + \frac{36114056255241525781172}{1038985510931638229497685} a^{13} - \frac{1120963118776252889276569}{25974637773290955737442125} a^{12} - \frac{446591093297662333312507}{1038985510931638229497685} a^{11} - \frac{11652570999457683460235953}{25974637773290955737442125} a^{10} + \frac{113926294469806835449633}{1038985510931638229497685} a^{9} - \frac{4143666150335868965602859}{25974637773290955737442125} a^{8} - \frac{1299272957749327239248924}{5194927554658191147488425} a^{7} - \frac{45645616744665658536731}{140403447423194355337525} a^{6} - \frac{1454747202573961108124507}{5194927554658191147488425} a^{5} - \frac{324277694356358538197931}{3710662539041565105348875} a^{4} + \frac{455529277338756412579327}{5194927554658191147488425} a^{3} - \frac{2278806181125286183753649}{25974637773290955737442125} a^{2} + \frac{422813904623347664778272}{1038985510931638229497685} a + \frac{295641202301014397180982}{1038985510931638229497685}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4093870424302.4214 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 56 |
The 17 conjugacy class representatives for $D_{28}$ |
Character table for $D_{28}$ |
Intermediate fields
\(\Q(\sqrt{-7}) \), 4.0.22001.1, 7.1.31047965207.1, 14.0.6747833004465577869943.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{14}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | $28$ | $28$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{13}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
449 | Data not computed |