Properties

Label 28.0.20024072326...0601.1
Degree $28$
Signature $[0, 14]$
Discriminant $7^{14}\cdot 43^{26}$
Root discriminant $86.96$
Ramified primes $7, 43$
Class number $3584$ (GRH)
Class group $[2, 2, 2, 4, 4, 28]$ (GRH)
Galois group $C_2\times C_{14}$ (as 28T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![490421, 1932120, 6869672, 6890309, 8855016, -10672203, 14313843, -11720297, 31974029, -47799819, 54111340, -50087517, 44459150, -36414037, 28024356, -19294392, 11989926, -6601344, 3232728, -1401648, 539214, -183020, 54685, -14252, 3227, -616, 97, -12, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 12*x^27 + 97*x^26 - 616*x^25 + 3227*x^24 - 14252*x^23 + 54685*x^22 - 183020*x^21 + 539214*x^20 - 1401648*x^19 + 3232728*x^18 - 6601344*x^17 + 11989926*x^16 - 19294392*x^15 + 28024356*x^14 - 36414037*x^13 + 44459150*x^12 - 50087517*x^11 + 54111340*x^10 - 47799819*x^9 + 31974029*x^8 - 11720297*x^7 + 14313843*x^6 - 10672203*x^5 + 8855016*x^4 + 6890309*x^3 + 6869672*x^2 + 1932120*x + 490421)
 
gp: K = bnfinit(x^28 - 12*x^27 + 97*x^26 - 616*x^25 + 3227*x^24 - 14252*x^23 + 54685*x^22 - 183020*x^21 + 539214*x^20 - 1401648*x^19 + 3232728*x^18 - 6601344*x^17 + 11989926*x^16 - 19294392*x^15 + 28024356*x^14 - 36414037*x^13 + 44459150*x^12 - 50087517*x^11 + 54111340*x^10 - 47799819*x^9 + 31974029*x^8 - 11720297*x^7 + 14313843*x^6 - 10672203*x^5 + 8855016*x^4 + 6890309*x^3 + 6869672*x^2 + 1932120*x + 490421, 1)
 

Normalized defining polynomial

\( x^{28} - 12 x^{27} + 97 x^{26} - 616 x^{25} + 3227 x^{24} - 14252 x^{23} + 54685 x^{22} - 183020 x^{21} + 539214 x^{20} - 1401648 x^{19} + 3232728 x^{18} - 6601344 x^{17} + 11989926 x^{16} - 19294392 x^{15} + 28024356 x^{14} - 36414037 x^{13} + 44459150 x^{12} - 50087517 x^{11} + 54111340 x^{10} - 47799819 x^{9} + 31974029 x^{8} - 11720297 x^{7} + 14313843 x^{6} - 10672203 x^{5} + 8855016 x^{4} + 6890309 x^{3} + 6869672 x^{2} + 1932120 x + 490421 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $28$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 14]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2002407232668075518060451991052904113005433477935650601=7^{14}\cdot 43^{26}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $86.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(301=7\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{301}(64,·)$, $\chi_{301}(1,·)$, $\chi_{301}(260,·)$, $\chi_{301}(8,·)$, $\chi_{301}(204,·)$, $\chi_{301}(78,·)$, $\chi_{301}(274,·)$, $\chi_{301}(211,·)$, $\chi_{301}(85,·)$, $\chi_{301}(22,·)$, $\chi_{301}(279,·)$, $\chi_{301}(216,·)$, $\chi_{301}(90,·)$, $\chi_{301}(27,·)$, $\chi_{301}(223,·)$, $\chi_{301}(97,·)$, $\chi_{301}(293,·)$, $\chi_{301}(41,·)$, $\chi_{301}(300,·)$, $\chi_{301}(237,·)$, $\chi_{301}(174,·)$, $\chi_{301}(176,·)$, $\chi_{301}(113,·)$, $\chi_{301}(118,·)$, $\chi_{301}(183,·)$, $\chi_{301}(188,·)$, $\chi_{301}(125,·)$, $\chi_{301}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{27501559} a^{25} + \frac{3938535}{27501559} a^{24} + \frac{11211562}{27501559} a^{23} - \frac{8794301}{27501559} a^{22} + \frac{2035927}{27501559} a^{21} + \frac{3884138}{27501559} a^{20} + \frac{1837291}{27501559} a^{19} + \frac{8949419}{27501559} a^{18} - \frac{4598374}{27501559} a^{17} - \frac{1321352}{27501559} a^{16} + \frac{3454693}{27501559} a^{15} + \frac{10002647}{27501559} a^{14} + \frac{2991626}{27501559} a^{13} - \frac{2011914}{27501559} a^{12} + \frac{10962408}{27501559} a^{11} + \frac{7945669}{27501559} a^{10} - \frac{5923078}{27501559} a^{9} + \frac{5190586}{27501559} a^{8} - \frac{9416517}{27501559} a^{7} - \frac{8197124}{27501559} a^{6} - \frac{7144380}{27501559} a^{5} - \frac{6311610}{27501559} a^{4} - \frac{2730071}{27501559} a^{3} - \frac{10379014}{27501559} a^{2} - \frac{9265738}{27501559} a + \frac{75985}{27501559}$, $\frac{1}{1744091421023249} a^{26} + \frac{21363943}{1744091421023249} a^{25} + \frac{303601985495712}{1744091421023249} a^{24} - \frac{276714425280256}{1744091421023249} a^{23} - \frac{559269102575299}{1744091421023249} a^{22} - \frac{28091808544109}{1744091421023249} a^{21} + \frac{163669072462339}{1744091421023249} a^{20} - \frac{612858904707762}{1744091421023249} a^{19} + \frac{39684239656165}{1744091421023249} a^{18} - \frac{561315814305337}{1744091421023249} a^{17} + \frac{127160946943636}{1744091421023249} a^{16} + \frac{248090096130391}{1744091421023249} a^{15} + \frac{381862971801333}{1744091421023249} a^{14} - \frac{257935310283472}{1744091421023249} a^{13} + \frac{799400217188066}{1744091421023249} a^{12} + \frac{245776633783817}{1744091421023249} a^{11} + \frac{439800093207667}{1744091421023249} a^{10} + \frac{578674423997256}{1744091421023249} a^{9} - \frac{785111529063263}{1744091421023249} a^{8} + \frac{643714653533692}{1744091421023249} a^{7} + \frac{525658658277428}{1744091421023249} a^{6} + \frac{857436798160769}{1744091421023249} a^{5} - \frac{663912650647294}{1744091421023249} a^{4} - \frac{84768854992308}{1744091421023249} a^{3} + \frac{835454069567502}{1744091421023249} a^{2} + \frac{288119775604599}{1744091421023249} a - \frac{574057552431258}{1744091421023249}$, $\frac{1}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{27} + \frac{12376981090415413791176281941092827101220315714941118013319653491853301372}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{26} + \frac{427226458498973840089920226779709235137608362981792315236095806103536041432335805}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{25} + \frac{65713806382915731245321014882877251496080689368950532942320094667233704440676896659450251}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{24} + \frac{76694017252678703642362976727985235156774587951543148995007880721482075467245684223367372}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{23} - \frac{102716352583946056490772552793416219051002775311318617018330630999425594575707224587959058}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{22} + \frac{34579999538945460786019945590608233625553044616758307237880469314985088455612583573519769}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{21} + \frac{106633991253977687833891479219622954133969492565418490319115239638996413584090785062871196}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{20} + \frac{6025509588750713099254917086871010967031228414908824261016394148439757041277734385872161}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{19} - \frac{53361899560384829346018795663100319884760955128422850517200282578460389446266162203303177}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{18} + \frac{69387061058641530842320147786395780343724302585162534926494429599698906200673150727266150}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{17} - \frac{103671710615111908736802218626860494267430279148077897593145249990960332700783410862925831}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{16} - \frac{56722135556216473036259675884641581571471576561177941026786521326574358835724002932000670}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{15} - \frac{5425308033372228701169275441527801648722971552512741093414525520521252061326187060241471}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{14} + \frac{24324217060928721124428191040451664702652991792968428387439670123279576647597951893569302}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{13} - \frac{78263950362841459729787196317648739463687296711287433777533251537705787307284026060914137}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{12} - \frac{80866449050462395696278813655264069219166262272323700547531714889932988237699413827508352}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{11} + \frac{96830696799699989912495179758971057121613384230549645140161367123130209634596670599403031}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{10} - \frac{96170816836349740334898488164139728725500946751497123320221150870893378036488715588158513}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{9} + \frac{28937400378703690031847611825841140317301012894583928113020700185300856182846705111392006}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{8} - \frac{28025380631516557522821197498339086063461169733277964222076233955895291409777006841775979}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{7} - \frac{48368725984565012031422000127768956888900545064172118138802509506935538637125025749643952}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{6} + \frac{26824145672880604505034366054112066976704635635395981781423912420264563507393337700340295}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{5} - \frac{11778678186016523075402969732784372000921788393273931283744042860607009513615901262360968}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{4} + \frac{8056048615987693386949172705026503780688965462125282483234929247137107852674317913043270}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{3} + \frac{102816985514045985489094340150441040983980836211144887110488205764799464190589919103979972}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a^{2} + \frac{5598773609295649000929378648953696074453590777708777546631006642613966328100181881065126}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201} a - \frac{70163926087019676416030704269984642082137722638972853022792515525070316615543556083895143}{224058951994527002808515139261650472024042742454560016087032251019777696027502780378546201}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{28}$, which has order $3584$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 935057598520.6207 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{14}$ (as 28T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 28
The 28 conjugacy class representatives for $C_2\times C_{14}$
Character table for $C_2\times C_{14}$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{301}) \), \(\Q(\sqrt{-7}, \sqrt{-43})\), 7.7.6321363049.1, 14.0.32908474225670013957008743.1, 14.0.1718264124282290785243.1, 14.14.1415064391703810600151375949.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ R ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}$ ${\href{/LocalNumberField/41.14.0.1}{14} }^{2}$ R ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$43$43.14.13.11$x^{14} + 205667667$$14$$1$$13$$C_{14}$$[\ ]_{14}$
43.14.13.11$x^{14} + 205667667$$14$$1$$13$$C_{14}$$[\ ]_{14}$