Properties

Label 28.0.189...232.1
Degree $28$
Signature $[0, 14]$
Discriminant $1.892\times 10^{58}$
Root discriminant \(120.59\)
Ramified primes $2,29$
Class number $3088744$ (GRH)
Class group [2, 2, 772186] (GRH)
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783)
 
gp: K = bnfinit(y^28 - 4*y^27 - 14*y^26 + 64*y^25 + 191*y^24 - 772*y^23 - 690*y^22 + 4028*y^21 - 654*y^20 - 16648*y^19 + 22712*y^18 + 37484*y^17 + 113927*y^16 + 252872*y^15 + 1432704*y^14 - 2924152*y^13 + 10716934*y^12 - 2935524*y^11 + 20038*y^10 + 11010404*y^9 + 19222670*y^8 - 54174868*y^7 + 364501416*y^6 - 435001108*y^5 + 473363957*y^4 - 376661420*y^3 + 493240074*y^2 - 18656684*y + 186649783, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783)
 

\( x^{28} - 4 x^{27} - 14 x^{26} + 64 x^{25} + 191 x^{24} - 772 x^{23} - 690 x^{22} + 4028 x^{21} + \cdots + 186649783 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(18917407352603402612306290142504402709970002327473311711232\) \(\medspace = 2^{77}\cdot 29^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(120.59\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}29^{6/7}\approx 120.59144141897728$
Ramified primes:   \(2\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\card{ \Gal(K/\Q) }$:  $28$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(464=2^{4}\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{464}(123,·)$, $\chi_{464}(1,·)$, $\chi_{464}(83,·)$, $\chi_{464}(451,·)$, $\chi_{464}(227,·)$, $\chi_{464}(257,·)$, $\chi_{464}(393,·)$, $\chi_{464}(339,·)$, $\chi_{464}(139,·)$, $\chi_{464}(401,·)$, $\chi_{464}(355,·)$, $\chi_{464}(25,·)$, $\chi_{464}(281,·)$, $\chi_{464}(219,·)$, $\chi_{464}(297,·)$, $\chi_{464}(459,·)$, $\chi_{464}(161,·)$, $\chi_{464}(291,·)$, $\chi_{464}(65,·)$, $\chi_{464}(81,·)$, $\chi_{464}(169,·)$, $\chi_{464}(107,·)$, $\chi_{464}(49,·)$, $\chi_{464}(371,·)$, $\chi_{464}(315,·)$, $\chi_{464}(233,·)$, $\chi_{464}(313,·)$, $\chi_{464}(59,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{8192}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17}a^{15}+\frac{7}{17}a^{14}+\frac{3}{17}a^{13}+\frac{5}{17}a^{12}-\frac{1}{17}a^{11}+\frac{1}{17}a^{10}+\frac{2}{17}a^{9}+\frac{2}{17}a^{8}+\frac{7}{17}a^{7}+\frac{8}{17}a^{6}+\frac{6}{17}a^{5}-\frac{3}{17}a^{4}-\frac{8}{17}a^{3}-\frac{3}{17}a^{2}+\frac{7}{17}a$, $\frac{1}{17}a^{16}+\frac{5}{17}a^{14}+\frac{1}{17}a^{13}-\frac{2}{17}a^{12}+\frac{8}{17}a^{11}-\frac{5}{17}a^{10}+\frac{5}{17}a^{9}-\frac{7}{17}a^{8}-\frac{7}{17}a^{7}+\frac{1}{17}a^{6}+\frac{6}{17}a^{5}-\frac{4}{17}a^{4}+\frac{2}{17}a^{3}-\frac{6}{17}a^{2}+\frac{2}{17}a$, $\frac{1}{17}a^{17}-\frac{1}{17}a$, $\frac{1}{17}a^{18}-\frac{1}{17}a^{2}$, $\frac{1}{17}a^{19}-\frac{1}{17}a^{3}$, $\frac{1}{17}a^{20}-\frac{1}{17}a^{4}$, $\frac{1}{17}a^{21}-\frac{1}{17}a^{5}$, $\frac{1}{17}a^{22}-\frac{1}{17}a^{6}$, $\frac{1}{17}a^{23}-\frac{1}{17}a^{7}$, $\frac{1}{289}a^{24}-\frac{3}{289}a^{23}+\frac{2}{289}a^{22}+\frac{7}{289}a^{21}+\frac{4}{289}a^{20}+\frac{7}{289}a^{19}+\frac{8}{289}a^{18}-\frac{4}{289}a^{17}+\frac{7}{289}a^{16}-\frac{5}{289}a^{15}+\frac{77}{289}a^{13}+\frac{63}{289}a^{12}-\frac{24}{289}a^{11}+\frac{11}{289}a^{10}+\frac{144}{289}a^{9}+\frac{8}{289}a^{8}-\frac{30}{289}a^{7}-\frac{35}{289}a^{6}-\frac{12}{289}a^{5}+\frac{8}{17}a^{4}-\frac{4}{289}a^{3}+\frac{84}{289}a^{2}+\frac{8}{17}a$, $\frac{1}{289}a^{25}-\frac{7}{289}a^{23}-\frac{4}{289}a^{22}+\frac{8}{289}a^{21}+\frac{2}{289}a^{20}-\frac{5}{289}a^{19}+\frac{3}{289}a^{18}-\frac{5}{289}a^{17}-\frac{1}{289}a^{16}+\frac{2}{289}a^{15}+\frac{111}{289}a^{14}+\frac{39}{289}a^{13}-\frac{5}{289}a^{12}+\frac{75}{289}a^{11}-\frac{10}{289}a^{10}+\frac{100}{289}a^{9}-\frac{142}{289}a^{8}+\frac{113}{289}a^{7}+\frac{19}{289}a^{6}+\frac{117}{289}a^{5}-\frac{140}{289}a^{4}-\frac{64}{289}a^{3}-\frac{122}{289}a^{2}-\frac{5}{17}a$, $\frac{1}{25\!\cdots\!69}a^{26}-\frac{19\!\cdots\!49}{25\!\cdots\!69}a^{25}+\frac{29\!\cdots\!24}{25\!\cdots\!69}a^{24}-\frac{54\!\cdots\!10}{25\!\cdots\!69}a^{23}+\frac{35\!\cdots\!94}{25\!\cdots\!69}a^{22}-\frac{69\!\cdots\!31}{25\!\cdots\!69}a^{21}+\frac{14\!\cdots\!11}{25\!\cdots\!69}a^{20}-\frac{44\!\cdots\!40}{25\!\cdots\!69}a^{19}+\frac{90\!\cdots\!78}{25\!\cdots\!69}a^{18}-\frac{57\!\cdots\!90}{25\!\cdots\!69}a^{17}-\frac{37\!\cdots\!48}{14\!\cdots\!57}a^{16}-\frac{28\!\cdots\!24}{25\!\cdots\!69}a^{15}+\frac{49\!\cdots\!58}{25\!\cdots\!69}a^{14}+\frac{28\!\cdots\!10}{25\!\cdots\!69}a^{13}+\frac{68\!\cdots\!36}{25\!\cdots\!69}a^{12}+\frac{42\!\cdots\!67}{25\!\cdots\!69}a^{11}-\frac{74\!\cdots\!81}{25\!\cdots\!69}a^{10}+\frac{95\!\cdots\!33}{25\!\cdots\!69}a^{9}+\frac{74\!\cdots\!13}{25\!\cdots\!69}a^{8}+\frac{74\!\cdots\!24}{25\!\cdots\!69}a^{7}-\frac{32\!\cdots\!52}{25\!\cdots\!69}a^{6}+\frac{83\!\cdots\!90}{25\!\cdots\!69}a^{5}+\frac{26\!\cdots\!66}{25\!\cdots\!69}a^{4}+\frac{89\!\cdots\!86}{25\!\cdots\!69}a^{3}-\frac{54\!\cdots\!25}{25\!\cdots\!69}a^{2}+\frac{46\!\cdots\!30}{14\!\cdots\!57}a-\frac{34\!\cdots\!84}{87\!\cdots\!21}$, $\frac{1}{17\!\cdots\!69}a^{27}+\frac{10\!\cdots\!19}{17\!\cdots\!69}a^{26}-\frac{31\!\cdots\!19}{17\!\cdots\!69}a^{25}+\frac{72\!\cdots\!52}{17\!\cdots\!69}a^{24}-\frac{12\!\cdots\!40}{10\!\cdots\!57}a^{23}+\frac{30\!\cdots\!98}{17\!\cdots\!69}a^{22}+\frac{23\!\cdots\!48}{17\!\cdots\!69}a^{21}+\frac{74\!\cdots\!65}{17\!\cdots\!69}a^{20}-\frac{20\!\cdots\!11}{17\!\cdots\!69}a^{19}-\frac{34\!\cdots\!58}{17\!\cdots\!69}a^{18}-\frac{14\!\cdots\!30}{17\!\cdots\!69}a^{17}+\frac{39\!\cdots\!13}{17\!\cdots\!69}a^{16}-\frac{41\!\cdots\!51}{17\!\cdots\!69}a^{15}-\frac{62\!\cdots\!55}{17\!\cdots\!69}a^{14}-\frac{18\!\cdots\!45}{17\!\cdots\!69}a^{13}-\frac{19\!\cdots\!94}{17\!\cdots\!69}a^{12}+\frac{31\!\cdots\!42}{17\!\cdots\!69}a^{11}-\frac{87\!\cdots\!30}{17\!\cdots\!69}a^{10}+\frac{28\!\cdots\!86}{17\!\cdots\!69}a^{9}-\frac{33\!\cdots\!37}{17\!\cdots\!69}a^{8}-\frac{40\!\cdots\!99}{17\!\cdots\!69}a^{7}+\frac{26\!\cdots\!17}{17\!\cdots\!69}a^{6}+\frac{47\!\cdots\!81}{17\!\cdots\!69}a^{5}-\frac{48\!\cdots\!81}{17\!\cdots\!69}a^{4}+\frac{68\!\cdots\!72}{17\!\cdots\!69}a^{3}+\frac{46\!\cdots\!16}{17\!\cdots\!69}a^{2}+\frac{11\!\cdots\!87}{10\!\cdots\!57}a-\frac{19\!\cdots\!96}{59\!\cdots\!21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $17$

Class group and class number

$C_{2}\times C_{2}\times C_{772186}$, which has order $3088744$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{17\!\cdots\!80}{89\!\cdots\!69}a^{27}-\frac{10\!\cdots\!62}{89\!\cdots\!69}a^{26}-\frac{15\!\cdots\!44}{89\!\cdots\!69}a^{25}+\frac{17\!\cdots\!66}{89\!\cdots\!69}a^{24}+\frac{13\!\cdots\!88}{89\!\cdots\!69}a^{23}-\frac{23\!\cdots\!04}{89\!\cdots\!69}a^{22}+\frac{92\!\cdots\!46}{52\!\cdots\!57}a^{21}+\frac{15\!\cdots\!21}{89\!\cdots\!69}a^{20}-\frac{24\!\cdots\!76}{89\!\cdots\!69}a^{19}-\frac{66\!\cdots\!68}{89\!\cdots\!69}a^{18}+\frac{18\!\cdots\!92}{89\!\cdots\!69}a^{17}+\frac{15\!\cdots\!65}{89\!\cdots\!69}a^{16}-\frac{26\!\cdots\!96}{52\!\cdots\!57}a^{15}-\frac{37\!\cdots\!98}{89\!\cdots\!69}a^{14}+\frac{34\!\cdots\!14}{89\!\cdots\!69}a^{13}-\frac{85\!\cdots\!20}{89\!\cdots\!69}a^{12}+\frac{23\!\cdots\!68}{89\!\cdots\!69}a^{11}-\frac{15\!\cdots\!98}{89\!\cdots\!69}a^{10}-\frac{63\!\cdots\!72}{89\!\cdots\!69}a^{9}+\frac{92\!\cdots\!28}{89\!\cdots\!69}a^{8}+\frac{17\!\cdots\!08}{89\!\cdots\!69}a^{7}-\frac{44\!\cdots\!02}{89\!\cdots\!69}a^{6}+\frac{50\!\cdots\!24}{89\!\cdots\!69}a^{5}-\frac{33\!\cdots\!25}{52\!\cdots\!57}a^{4}+\frac{63\!\cdots\!96}{89\!\cdots\!69}a^{3}-\frac{19\!\cdots\!63}{52\!\cdots\!57}a^{2}+\frac{59\!\cdots\!02}{31\!\cdots\!21}a-\frac{13\!\cdots\!54}{31\!\cdots\!21}$, $\frac{49\!\cdots\!04}{17\!\cdots\!69}a^{27}-\frac{17\!\cdots\!52}{10\!\cdots\!57}a^{26}-\frac{32\!\cdots\!32}{17\!\cdots\!69}a^{25}+\frac{45\!\cdots\!74}{17\!\cdots\!69}a^{24}+\frac{33\!\cdots\!76}{17\!\cdots\!69}a^{23}-\frac{56\!\cdots\!22}{17\!\cdots\!69}a^{22}+\frac{41\!\cdots\!72}{17\!\cdots\!69}a^{21}+\frac{27\!\cdots\!54}{17\!\cdots\!69}a^{20}-\frac{45\!\cdots\!00}{17\!\cdots\!69}a^{19}-\frac{77\!\cdots\!82}{17\!\cdots\!69}a^{18}+\frac{29\!\cdots\!68}{17\!\cdots\!69}a^{17}-\frac{48\!\cdots\!90}{17\!\cdots\!69}a^{16}+\frac{11\!\cdots\!04}{17\!\cdots\!69}a^{15}+\frac{27\!\cdots\!44}{10\!\cdots\!57}a^{14}+\frac{49\!\cdots\!64}{17\!\cdots\!69}a^{13}-\frac{27\!\cdots\!60}{17\!\cdots\!69}a^{12}+\frac{81\!\cdots\!52}{17\!\cdots\!69}a^{11}-\frac{10\!\cdots\!84}{17\!\cdots\!69}a^{10}+\frac{58\!\cdots\!88}{17\!\cdots\!69}a^{9}+\frac{11\!\cdots\!66}{17\!\cdots\!69}a^{8}-\frac{39\!\cdots\!28}{17\!\cdots\!69}a^{7}-\frac{48\!\cdots\!46}{17\!\cdots\!69}a^{6}+\frac{14\!\cdots\!00}{10\!\cdots\!57}a^{5}-\frac{54\!\cdots\!93}{17\!\cdots\!69}a^{4}+\frac{34\!\cdots\!04}{10\!\cdots\!57}a^{3}-\frac{40\!\cdots\!34}{17\!\cdots\!69}a^{2}+\frac{17\!\cdots\!84}{10\!\cdots\!57}a-\frac{72\!\cdots\!60}{59\!\cdots\!21}$, $\frac{66\!\cdots\!48}{17\!\cdots\!69}a^{27}-\frac{35\!\cdots\!30}{17\!\cdots\!69}a^{26}-\frac{57\!\cdots\!44}{17\!\cdots\!69}a^{25}+\frac{54\!\cdots\!14}{17\!\cdots\!69}a^{24}+\frac{67\!\cdots\!76}{17\!\cdots\!69}a^{23}-\frac{39\!\cdots\!44}{10\!\cdots\!57}a^{22}+\frac{27\!\cdots\!48}{17\!\cdots\!69}a^{21}+\frac{32\!\cdots\!51}{17\!\cdots\!69}a^{20}-\frac{45\!\cdots\!12}{17\!\cdots\!69}a^{19}-\frac{10\!\cdots\!92}{17\!\cdots\!69}a^{18}+\frac{32\!\cdots\!32}{17\!\cdots\!69}a^{17}+\frac{56\!\cdots\!93}{17\!\cdots\!69}a^{16}+\frac{33\!\cdots\!64}{17\!\cdots\!69}a^{15}+\frac{10\!\cdots\!30}{17\!\cdots\!69}a^{14}+\frac{75\!\cdots\!36}{17\!\cdots\!69}a^{13}-\frac{31\!\cdots\!04}{17\!\cdots\!69}a^{12}+\frac{98\!\cdots\!04}{17\!\cdots\!69}a^{11}-\frac{10\!\cdots\!62}{17\!\cdots\!69}a^{10}+\frac{86\!\cdots\!72}{17\!\cdots\!69}a^{9}+\frac{13\!\cdots\!12}{17\!\cdots\!69}a^{8}-\frac{19\!\cdots\!44}{17\!\cdots\!69}a^{7}-\frac{56\!\cdots\!30}{17\!\cdots\!69}a^{6}+\frac{30\!\cdots\!28}{17\!\cdots\!69}a^{5}-\frac{59\!\cdots\!51}{17\!\cdots\!69}a^{4}+\frac{66\!\cdots\!08}{17\!\cdots\!69}a^{3}-\frac{46\!\cdots\!58}{17\!\cdots\!69}a^{2}+\frac{19\!\cdots\!60}{10\!\cdots\!57}a-\frac{67\!\cdots\!31}{59\!\cdots\!21}$, $\frac{17\!\cdots\!40}{17\!\cdots\!69}a^{27}-\frac{11\!\cdots\!74}{17\!\cdots\!69}a^{26}-\frac{84\!\cdots\!56}{17\!\cdots\!69}a^{25}+\frac{17\!\cdots\!59}{17\!\cdots\!69}a^{24}+\frac{65\!\cdots\!84}{17\!\cdots\!69}a^{23}-\frac{21\!\cdots\!70}{17\!\cdots\!69}a^{22}+\frac{21\!\cdots\!44}{17\!\cdots\!69}a^{21}+\frac{10\!\cdots\!01}{17\!\cdots\!69}a^{20}-\frac{19\!\cdots\!76}{17\!\cdots\!69}a^{19}-\frac{28\!\cdots\!50}{17\!\cdots\!69}a^{18}+\frac{12\!\cdots\!08}{17\!\cdots\!69}a^{17}-\frac{34\!\cdots\!19}{17\!\cdots\!69}a^{16}-\frac{27\!\cdots\!76}{17\!\cdots\!69}a^{15}+\frac{74\!\cdots\!82}{17\!\cdots\!69}a^{14}+\frac{15\!\cdots\!88}{17\!\cdots\!69}a^{13}-\frac{10\!\cdots\!76}{17\!\cdots\!69}a^{12}+\frac{31\!\cdots\!00}{17\!\cdots\!69}a^{11}-\frac{44\!\cdots\!34}{17\!\cdots\!69}a^{10}+\frac{42\!\cdots\!76}{17\!\cdots\!69}a^{9}+\frac{54\!\cdots\!37}{17\!\cdots\!69}a^{8}-\frac{11\!\cdots\!84}{17\!\cdots\!69}a^{7}-\frac{16\!\cdots\!16}{17\!\cdots\!69}a^{6}+\frac{94\!\cdots\!00}{17\!\cdots\!69}a^{5}-\frac{21\!\cdots\!66}{17\!\cdots\!69}a^{4}+\frac{23\!\cdots\!92}{17\!\cdots\!69}a^{3}-\frac{15\!\cdots\!24}{17\!\cdots\!69}a^{2}+\frac{74\!\cdots\!96}{10\!\cdots\!57}a-\frac{19\!\cdots\!73}{59\!\cdots\!21}$, $\frac{26\!\cdots\!72}{17\!\cdots\!69}a^{27}-\frac{12\!\cdots\!46}{17\!\cdots\!69}a^{26}-\frac{30\!\cdots\!28}{17\!\cdots\!69}a^{25}+\frac{18\!\cdots\!48}{17\!\cdots\!69}a^{24}+\frac{39\!\cdots\!60}{17\!\cdots\!69}a^{23}-\frac{22\!\cdots\!16}{17\!\cdots\!69}a^{22}-\frac{45\!\cdots\!96}{17\!\cdots\!69}a^{21}+\frac{11\!\cdots\!01}{17\!\cdots\!69}a^{20}-\frac{97\!\cdots\!52}{17\!\cdots\!69}a^{19}-\frac{39\!\cdots\!72}{17\!\cdots\!69}a^{18}+\frac{93\!\cdots\!96}{17\!\cdots\!69}a^{17}+\frac{42\!\cdots\!31}{17\!\cdots\!69}a^{16}+\frac{23\!\cdots\!92}{17\!\cdots\!69}a^{15}+\frac{37\!\cdots\!06}{10\!\cdots\!57}a^{14}+\frac{35\!\cdots\!16}{17\!\cdots\!69}a^{13}-\frac{97\!\cdots\!70}{17\!\cdots\!69}a^{12}+\frac{33\!\cdots\!92}{17\!\cdots\!69}a^{11}-\frac{24\!\cdots\!78}{17\!\cdots\!69}a^{10}+\frac{32\!\cdots\!04}{17\!\cdots\!69}a^{9}+\frac{41\!\cdots\!01}{17\!\cdots\!69}a^{8}+\frac{77\!\cdots\!48}{17\!\cdots\!69}a^{7}-\frac{19\!\cdots\!62}{17\!\cdots\!69}a^{6}+\frac{10\!\cdots\!84}{17\!\cdots\!69}a^{5}-\frac{17\!\cdots\!27}{17\!\cdots\!69}a^{4}+\frac{19\!\cdots\!44}{17\!\cdots\!69}a^{3}-\frac{14\!\cdots\!62}{17\!\cdots\!69}a^{2}+\frac{51\!\cdots\!08}{10\!\cdots\!57}a-\frac{22\!\cdots\!44}{59\!\cdots\!21}$, $\frac{27\!\cdots\!96}{17\!\cdots\!69}a^{27}-\frac{10\!\cdots\!66}{17\!\cdots\!69}a^{26}-\frac{37\!\cdots\!92}{17\!\cdots\!69}a^{25}+\frac{16\!\cdots\!46}{17\!\cdots\!69}a^{24}+\frac{51\!\cdots\!04}{17\!\cdots\!69}a^{23}-\frac{19\!\cdots\!18}{17\!\cdots\!69}a^{22}-\frac{10\!\cdots\!16}{10\!\cdots\!57}a^{21}+\frac{98\!\cdots\!81}{17\!\cdots\!69}a^{20}-\frac{25\!\cdots\!00}{17\!\cdots\!69}a^{19}-\frac{39\!\cdots\!48}{17\!\cdots\!69}a^{18}+\frac{62\!\cdots\!12}{17\!\cdots\!69}a^{17}+\frac{76\!\cdots\!10}{17\!\cdots\!69}a^{16}+\frac{32\!\cdots\!96}{17\!\cdots\!69}a^{15}+\frac{83\!\cdots\!12}{17\!\cdots\!69}a^{14}+\frac{41\!\cdots\!56}{17\!\cdots\!69}a^{13}-\frac{74\!\cdots\!55}{17\!\cdots\!69}a^{12}+\frac{30\!\cdots\!48}{17\!\cdots\!69}a^{11}-\frac{83\!\cdots\!76}{17\!\cdots\!69}a^{10}+\frac{11\!\cdots\!72}{17\!\cdots\!69}a^{9}+\frac{38\!\cdots\!64}{17\!\cdots\!69}a^{8}+\frac{54\!\cdots\!68}{17\!\cdots\!69}a^{7}-\frac{14\!\cdots\!94}{17\!\cdots\!69}a^{6}+\frac{10\!\cdots\!00}{17\!\cdots\!69}a^{5}-\frac{11\!\cdots\!12}{17\!\cdots\!69}a^{4}+\frac{92\!\cdots\!96}{10\!\cdots\!57}a^{3}-\frac{11\!\cdots\!66}{17\!\cdots\!69}a^{2}+\frac{33\!\cdots\!64}{10\!\cdots\!57}a-\frac{62\!\cdots\!65}{59\!\cdots\!21}$, $\frac{33\!\cdots\!32}{17\!\cdots\!69}a^{27}-\frac{17\!\cdots\!44}{17\!\cdots\!69}a^{26}-\frac{29\!\cdots\!92}{17\!\cdots\!69}a^{25}+\frac{27\!\cdots\!08}{17\!\cdots\!69}a^{24}+\frac{34\!\cdots\!76}{17\!\cdots\!69}a^{23}-\frac{33\!\cdots\!08}{17\!\cdots\!69}a^{22}+\frac{12\!\cdots\!08}{17\!\cdots\!69}a^{21}+\frac{16\!\cdots\!70}{17\!\cdots\!69}a^{20}-\frac{22\!\cdots\!84}{17\!\cdots\!69}a^{19}-\frac{50\!\cdots\!20}{17\!\cdots\!69}a^{18}+\frac{16\!\cdots\!08}{17\!\cdots\!69}a^{17}+\frac{58\!\cdots\!83}{17\!\cdots\!69}a^{16}+\frac{17\!\cdots\!16}{17\!\cdots\!69}a^{15}+\frac{53\!\cdots\!88}{17\!\cdots\!69}a^{14}+\frac{38\!\cdots\!12}{17\!\cdots\!69}a^{13}-\frac{15\!\cdots\!78}{17\!\cdots\!69}a^{12}+\frac{28\!\cdots\!92}{10\!\cdots\!57}a^{11}-\frac{52\!\cdots\!56}{17\!\cdots\!69}a^{10}+\frac{45\!\cdots\!80}{17\!\cdots\!69}a^{9}+\frac{70\!\cdots\!68}{17\!\cdots\!69}a^{8}-\frac{79\!\cdots\!84}{17\!\cdots\!69}a^{7}-\frac{28\!\cdots\!52}{17\!\cdots\!69}a^{6}+\frac{15\!\cdots\!32}{17\!\cdots\!69}a^{5}-\frac{29\!\cdots\!28}{17\!\cdots\!69}a^{4}+\frac{33\!\cdots\!56}{17\!\cdots\!69}a^{3}-\frac{23\!\cdots\!96}{17\!\cdots\!69}a^{2}+\frac{94\!\cdots\!84}{10\!\cdots\!57}a-\frac{22\!\cdots\!02}{59\!\cdots\!21}$, $\frac{11\!\cdots\!32}{17\!\cdots\!69}a^{27}-\frac{59\!\cdots\!36}{17\!\cdots\!69}a^{26}-\frac{10\!\cdots\!82}{17\!\cdots\!69}a^{25}+\frac{93\!\cdots\!81}{17\!\cdots\!69}a^{24}+\frac{12\!\cdots\!88}{17\!\cdots\!69}a^{23}-\frac{11\!\cdots\!52}{17\!\cdots\!69}a^{22}+\frac{39\!\cdots\!06}{17\!\cdots\!69}a^{21}+\frac{56\!\cdots\!58}{17\!\cdots\!69}a^{20}-\frac{73\!\cdots\!76}{17\!\cdots\!69}a^{19}-\frac{17\!\cdots\!97}{17\!\cdots\!69}a^{18}+\frac{54\!\cdots\!86}{17\!\cdots\!69}a^{17}+\frac{49\!\cdots\!22}{17\!\cdots\!69}a^{16}+\frac{63\!\cdots\!68}{17\!\cdots\!69}a^{15}+\frac{16\!\cdots\!84}{17\!\cdots\!69}a^{14}+\frac{13\!\cdots\!98}{17\!\cdots\!69}a^{13}-\frac{52\!\cdots\!73}{17\!\cdots\!69}a^{12}+\frac{16\!\cdots\!92}{17\!\cdots\!69}a^{11}-\frac{17\!\cdots\!74}{17\!\cdots\!69}a^{10}+\frac{15\!\cdots\!80}{17\!\cdots\!69}a^{9}+\frac{22\!\cdots\!89}{17\!\cdots\!69}a^{8}-\frac{22\!\cdots\!84}{17\!\cdots\!69}a^{7}-\frac{93\!\cdots\!28}{17\!\cdots\!69}a^{6}+\frac{51\!\cdots\!10}{17\!\cdots\!69}a^{5}-\frac{10\!\cdots\!57}{17\!\cdots\!69}a^{4}+\frac{66\!\cdots\!08}{10\!\cdots\!57}a^{3}-\frac{78\!\cdots\!66}{17\!\cdots\!69}a^{2}+\frac{32\!\cdots\!84}{10\!\cdots\!57}a-\frac{86\!\cdots\!53}{59\!\cdots\!21}$, $\frac{63\!\cdots\!96}{10\!\cdots\!57}a^{27}-\frac{65\!\cdots\!02}{17\!\cdots\!69}a^{26}-\frac{80\!\cdots\!90}{17\!\cdots\!69}a^{25}+\frac{10\!\cdots\!70}{17\!\cdots\!69}a^{24}+\frac{90\!\cdots\!72}{17\!\cdots\!69}a^{23}-\frac{13\!\cdots\!04}{17\!\cdots\!69}a^{22}+\frac{60\!\cdots\!64}{17\!\cdots\!69}a^{21}+\frac{77\!\cdots\!92}{17\!\cdots\!69}a^{20}-\frac{79\!\cdots\!76}{17\!\cdots\!69}a^{19}-\frac{28\!\cdots\!78}{17\!\cdots\!69}a^{18}+\frac{59\!\cdots\!06}{17\!\cdots\!69}a^{17}+\frac{55\!\cdots\!39}{17\!\cdots\!69}a^{16}-\frac{13\!\cdots\!76}{17\!\cdots\!69}a^{15}-\frac{23\!\cdots\!26}{17\!\cdots\!69}a^{14}+\frac{93\!\cdots\!20}{17\!\cdots\!69}a^{13}-\frac{58\!\cdots\!07}{17\!\cdots\!69}a^{12}+\frac{15\!\cdots\!44}{17\!\cdots\!69}a^{11}-\frac{22\!\cdots\!92}{17\!\cdots\!69}a^{10}-\frac{76\!\cdots\!12}{17\!\cdots\!69}a^{9}+\frac{14\!\cdots\!23}{17\!\cdots\!69}a^{8}+\frac{86\!\cdots\!88}{17\!\cdots\!69}a^{7}-\frac{10\!\cdots\!81}{17\!\cdots\!69}a^{6}+\frac{39\!\cdots\!34}{17\!\cdots\!69}a^{5}-\frac{11\!\cdots\!63}{17\!\cdots\!69}a^{4}+\frac{11\!\cdots\!76}{17\!\cdots\!69}a^{3}-\frac{75\!\cdots\!92}{17\!\cdots\!69}a^{2}+\frac{39\!\cdots\!12}{10\!\cdots\!57}a-\frac{93\!\cdots\!98}{59\!\cdots\!21}$, $\frac{29\!\cdots\!52}{17\!\cdots\!69}a^{27}-\frac{16\!\cdots\!56}{17\!\cdots\!69}a^{26}-\frac{24\!\cdots\!36}{17\!\cdots\!69}a^{25}+\frac{25\!\cdots\!62}{17\!\cdots\!69}a^{24}+\frac{27\!\cdots\!68}{17\!\cdots\!69}a^{23}-\frac{31\!\cdots\!25}{17\!\cdots\!69}a^{22}+\frac{15\!\cdots\!62}{17\!\cdots\!69}a^{21}+\frac{15\!\cdots\!01}{17\!\cdots\!69}a^{20}-\frac{22\!\cdots\!24}{17\!\cdots\!69}a^{19}-\frac{45\!\cdots\!38}{17\!\cdots\!69}a^{18}+\frac{15\!\cdots\!58}{17\!\cdots\!69}a^{17}-\frac{56\!\cdots\!33}{17\!\cdots\!69}a^{16}+\frac{12\!\cdots\!36}{17\!\cdots\!69}a^{15}+\frac{41\!\cdots\!81}{17\!\cdots\!69}a^{14}+\frac{32\!\cdots\!92}{17\!\cdots\!69}a^{13}-\frac{14\!\cdots\!22}{17\!\cdots\!69}a^{12}+\frac{45\!\cdots\!76}{17\!\cdots\!69}a^{11}-\frac{51\!\cdots\!18}{17\!\cdots\!69}a^{10}+\frac{27\!\cdots\!72}{17\!\cdots\!69}a^{9}+\frac{65\!\cdots\!67}{17\!\cdots\!69}a^{8}-\frac{15\!\cdots\!60}{17\!\cdots\!69}a^{7}-\frac{26\!\cdots\!70}{17\!\cdots\!69}a^{6}+\frac{13\!\cdots\!30}{17\!\cdots\!69}a^{5}-\frac{28\!\cdots\!05}{17\!\cdots\!69}a^{4}+\frac{30\!\cdots\!76}{17\!\cdots\!69}a^{3}-\frac{21\!\cdots\!57}{17\!\cdots\!69}a^{2}+\frac{90\!\cdots\!30}{10\!\cdots\!57}a-\frac{33\!\cdots\!28}{59\!\cdots\!21}$, $\frac{23\!\cdots\!08}{17\!\cdots\!69}a^{27}-\frac{12\!\cdots\!41}{17\!\cdots\!69}a^{26}-\frac{18\!\cdots\!74}{17\!\cdots\!69}a^{25}+\frac{19\!\cdots\!62}{17\!\cdots\!69}a^{24}+\frac{19\!\cdots\!40}{17\!\cdots\!69}a^{23}-\frac{24\!\cdots\!65}{17\!\cdots\!69}a^{22}+\frac{15\!\cdots\!92}{17\!\cdots\!69}a^{21}+\frac{11\!\cdots\!15}{17\!\cdots\!69}a^{20}-\frac{19\!\cdots\!84}{17\!\cdots\!69}a^{19}-\frac{32\!\cdots\!11}{17\!\cdots\!69}a^{18}+\frac{13\!\cdots\!08}{17\!\cdots\!69}a^{17}-\frac{30\!\cdots\!30}{17\!\cdots\!69}a^{16}+\frac{88\!\cdots\!76}{17\!\cdots\!69}a^{15}+\frac{42\!\cdots\!32}{17\!\cdots\!69}a^{14}+\frac{26\!\cdots\!86}{17\!\cdots\!69}a^{13}-\frac{12\!\cdots\!51}{17\!\cdots\!69}a^{12}+\frac{36\!\cdots\!76}{17\!\cdots\!69}a^{11}-\frac{44\!\cdots\!85}{17\!\cdots\!69}a^{10}+\frac{44\!\cdots\!86}{17\!\cdots\!69}a^{9}+\frac{47\!\cdots\!85}{17\!\cdots\!69}a^{8}-\frac{30\!\cdots\!96}{17\!\cdots\!69}a^{7}-\frac{25\!\cdots\!14}{17\!\cdots\!69}a^{6}+\frac{11\!\cdots\!08}{17\!\cdots\!69}a^{5}-\frac{23\!\cdots\!59}{17\!\cdots\!69}a^{4}+\frac{24\!\cdots\!76}{17\!\cdots\!69}a^{3}-\frac{18\!\cdots\!07}{17\!\cdots\!69}a^{2}+\frac{71\!\cdots\!10}{10\!\cdots\!57}a-\frac{33\!\cdots\!91}{59\!\cdots\!21}$, $\frac{61\!\cdots\!60}{17\!\cdots\!69}a^{27}-\frac{34\!\cdots\!56}{17\!\cdots\!69}a^{26}-\frac{46\!\cdots\!82}{17\!\cdots\!69}a^{25}+\frac{53\!\cdots\!82}{17\!\cdots\!69}a^{24}+\frac{52\!\cdots\!56}{17\!\cdots\!69}a^{23}-\frac{67\!\cdots\!22}{17\!\cdots\!69}a^{22}+\frac{36\!\cdots\!10}{17\!\cdots\!69}a^{21}+\frac{33\!\cdots\!35}{17\!\cdots\!69}a^{20}-\frac{47\!\cdots\!20}{17\!\cdots\!69}a^{19}-\frac{10\!\cdots\!42}{17\!\cdots\!69}a^{18}+\frac{32\!\cdots\!54}{17\!\cdots\!69}a^{17}+\frac{19\!\cdots\!95}{17\!\cdots\!69}a^{16}+\frac{20\!\cdots\!52}{17\!\cdots\!69}a^{15}+\frac{49\!\cdots\!80}{17\!\cdots\!69}a^{14}+\frac{64\!\cdots\!48}{17\!\cdots\!69}a^{13}-\frac{31\!\cdots\!12}{17\!\cdots\!69}a^{12}+\frac{94\!\cdots\!16}{17\!\cdots\!69}a^{11}-\frac{11\!\cdots\!59}{17\!\cdots\!69}a^{10}+\frac{50\!\cdots\!02}{17\!\cdots\!69}a^{9}+\frac{13\!\cdots\!23}{17\!\cdots\!69}a^{8}-\frac{93\!\cdots\!12}{17\!\cdots\!69}a^{7}-\frac{53\!\cdots\!26}{17\!\cdots\!69}a^{6}+\frac{28\!\cdots\!22}{17\!\cdots\!69}a^{5}-\frac{61\!\cdots\!15}{17\!\cdots\!69}a^{4}+\frac{66\!\cdots\!96}{17\!\cdots\!69}a^{3}-\frac{45\!\cdots\!06}{17\!\cdots\!69}a^{2}+\frac{20\!\cdots\!98}{10\!\cdots\!57}a-\frac{60\!\cdots\!18}{59\!\cdots\!21}$, $\frac{54\!\cdots\!76}{17\!\cdots\!69}a^{27}-\frac{29\!\cdots\!71}{17\!\cdots\!69}a^{26}-\frac{47\!\cdots\!28}{17\!\cdots\!69}a^{25}+\frac{45\!\cdots\!64}{17\!\cdots\!69}a^{24}+\frac{57\!\cdots\!52}{17\!\cdots\!69}a^{23}-\frac{57\!\cdots\!41}{17\!\cdots\!69}a^{22}+\frac{19\!\cdots\!34}{17\!\cdots\!69}a^{21}+\frac{28\!\cdots\!59}{17\!\cdots\!69}a^{20}-\frac{20\!\cdots\!80}{10\!\cdots\!57}a^{19}-\frac{96\!\cdots\!25}{17\!\cdots\!69}a^{18}+\frac{25\!\cdots\!72}{17\!\cdots\!69}a^{17}+\frac{78\!\cdots\!87}{17\!\cdots\!69}a^{16}+\frac{25\!\cdots\!72}{17\!\cdots\!69}a^{15}+\frac{45\!\cdots\!29}{17\!\cdots\!69}a^{14}+\frac{60\!\cdots\!06}{17\!\cdots\!69}a^{13}-\frac{25\!\cdots\!19}{17\!\cdots\!69}a^{12}+\frac{78\!\cdots\!00}{17\!\cdots\!69}a^{11}-\frac{87\!\cdots\!12}{17\!\cdots\!69}a^{10}+\frac{30\!\cdots\!22}{17\!\cdots\!69}a^{9}+\frac{10\!\cdots\!78}{17\!\cdots\!69}a^{8}+\frac{22\!\cdots\!64}{17\!\cdots\!69}a^{7}-\frac{44\!\cdots\!26}{17\!\cdots\!69}a^{6}+\frac{23\!\cdots\!82}{17\!\cdots\!69}a^{5}-\frac{49\!\cdots\!11}{17\!\cdots\!69}a^{4}+\frac{54\!\cdots\!04}{17\!\cdots\!69}a^{3}-\frac{36\!\cdots\!18}{17\!\cdots\!69}a^{2}+\frac{16\!\cdots\!36}{10\!\cdots\!57}a-\frac{49\!\cdots\!39}{59\!\cdots\!21}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 297452739458.56445 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot 297452739458.56445 \cdot 3088744}{2\cdot\sqrt{18917407352603402612306290142504402709970002327473311711232}}\cr\approx \mathstrut & 0.499180074231530 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 - 14*x^26 + 64*x^25 + 191*x^24 - 772*x^23 - 690*x^22 + 4028*x^21 - 654*x^20 - 16648*x^19 + 22712*x^18 + 37484*x^17 + 113927*x^16 + 252872*x^15 + 1432704*x^14 - 2924152*x^13 + 10716934*x^12 - 2935524*x^11 + 20038*x^10 + 11010404*x^9 + 19222670*x^8 - 54174868*x^7 + 364501416*x^6 - 435001108*x^5 + 473363957*x^4 - 376661420*x^3 + 493240074*x^2 - 18656684*x + 186649783);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{28}$ (as 28T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.0.2048.2, 7.7.594823321.1, 14.14.742003380228915810271232.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $28$ $28$ ${\href{/padicField/7.7.0.1}{7} }^{4}$ $28$ $28$ ${\href{/padicField/17.1.0.1}{1} }^{28}$ $28$ ${\href{/padicField/23.7.0.1}{7} }^{4}$ R ${\href{/padicField/31.14.0.1}{14} }^{2}$ $28$ ${\href{/padicField/41.2.0.1}{2} }^{14}$ $28$ ${\href{/padicField/47.14.0.1}{14} }^{2}$ $28$ ${\href{/padicField/59.4.0.1}{4} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $28$$4$$7$$77$
\(29\) Copy content Toggle raw display Deg $28$$7$$4$$24$