Normalized defining polynomial
\( x^{28} - x^{27} + 30 x^{26} - 30 x^{25} + 407 x^{24} - 407 x^{23} + 3307 x^{22} - 3307 x^{21} + 17981 x^{20} - 17981 x^{19} + 69340 x^{18} - 69340 x^{17} + 196621 x^{16} - 196621 x^{15} + 421429 x^{14} - 421429 x^{13} + 702439 x^{12} - 702439 x^{11} + 945981 x^{10} - 945981 x^{9} + 1086979 x^{8} - 1086979 x^{7} + 1138251 x^{6} - 1138251 x^{5} + 1148807 x^{4} - 1148807 x^{3} + 1149822 x^{2} - 1149822 x + 1149851 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18634854406558377293367533932433545897882080078125=5^{14}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(145=5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{145}(1,·)$, $\chi_{145}(69,·)$, $\chi_{145}(6,·)$, $\chi_{145}(71,·)$, $\chi_{145}(136,·)$, $\chi_{145}(141,·)$, $\chi_{145}(14,·)$, $\chi_{145}(79,·)$, $\chi_{145}(16,·)$, $\chi_{145}(81,·)$, $\chi_{145}(19,·)$, $\chi_{145}(84,·)$, $\chi_{145}(86,·)$, $\chi_{145}(89,·)$, $\chi_{145}(91,·)$, $\chi_{145}(96,·)$, $\chi_{145}(99,·)$, $\chi_{145}(36,·)$, $\chi_{145}(134,·)$, $\chi_{145}(39,·)$, $\chi_{145}(104,·)$, $\chi_{145}(44,·)$, $\chi_{145}(111,·)$, $\chi_{145}(114,·)$, $\chi_{145}(51,·)$, $\chi_{145}(119,·)$, $\chi_{145}(121,·)$, $\chi_{145}(124,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{514229} a^{15} - \frac{196418}{514229} a^{14} + \frac{15}{514229} a^{13} - \frac{178707}{514229} a^{12} + \frac{90}{514229} a^{11} - \frac{211545}{514229} a^{10} + \frac{275}{514229} a^{9} - \frac{109460}{514229} a^{8} + \frac{450}{514229} a^{7} - \frac{153244}{514229} a^{6} + \frac{378}{514229} a^{5} + \frac{69247}{514229} a^{4} + \frac{140}{514229} a^{3} + \frac{145869}{514229} a^{2} + \frac{15}{514229} a + \frac{121393}{514229}$, $\frac{1}{514229} a^{16} + \frac{16}{514229} a^{14} + \frac{196418}{514229} a^{13} + \frac{104}{514229} a^{12} - \frac{17711}{514229} a^{11} + \frac{352}{514229} a^{10} - \frac{88555}{514229} a^{9} + \frac{660}{514229} a^{8} - \frac{212532}{514229} a^{7} + \frac{672}{514229} a^{6} - \frac{247954}{514229} a^{5} + \frac{336}{514229} a^{4} - \frac{123977}{514229} a^{3} + \frac{64}{514229} a^{2} - \frac{17711}{514229} a + \frac{2}{514229}$, $\frac{1}{514229} a^{17} + \frac{253732}{514229} a^{14} - \frac{136}{514229} a^{13} - \frac{243773}{514229} a^{12} - \frac{1088}{514229} a^{11} + \frac{210791}{514229} a^{10} - \frac{3740}{514229} a^{9} - \frac{3859}{514229} a^{8} - \frac{6528}{514229} a^{7} + \frac{147034}{514229} a^{6} - \frac{5712}{514229} a^{5} - \frac{203471}{514229} a^{4} - \frac{2176}{514229} a^{3} + \frac{219530}{514229} a^{2} - \frac{238}{514229} a + \frac{114628}{514229}$, $\frac{1}{514229} a^{18} - \frac{153}{514229} a^{14} + \frac{64079}{514229} a^{13} - \frac{1326}{514229} a^{12} + \frac{987}{514229} a^{11} - \frac{5049}{514229} a^{10} + \frac{154985}{514229} a^{9} - \frac{10098}{514229} a^{8} + \frac{126472}{514229} a^{7} - \frac{10710}{514229} a^{6} + \frac{46656}{514229} a^{5} - \frac{5508}{514229} a^{4} + \frac{178851}{514229} a^{3} - \frac{1071}{514229} a^{2} - \frac{91749}{514229} a - \frac{34}{514229}$, $\frac{1}{514229} a^{19} - \frac{162593}{514229} a^{14} + \frac{969}{514229} a^{13} - \frac{87047}{514229} a^{12} + \frac{8721}{514229} a^{11} + \frac{185027}{514229} a^{10} + \frac{31977}{514229} a^{9} - \frac{165580}{514229} a^{8} + \frac{58140}{514229} a^{7} + \frac{254858}{514229} a^{6} + \frac{52326}{514229} a^{5} - \frac{25167}{514229} a^{4} + \frac{20349}{514229} a^{3} + \frac{114361}{514229} a^{2} + \frac{2261}{514229} a + \frac{60885}{514229}$, $\frac{1}{514229} a^{20} + \frac{1140}{514229} a^{14} - \frac{219297}{514229} a^{13} + \frac{11115}{514229} a^{12} - \frac{94244}{514229} a^{11} + \frac{45144}{514229} a^{10} - \frac{190428}{514229} a^{9} + \frac{94050}{514229} a^{8} - \frac{113039}{514229} a^{7} + \frac{102600}{514229} a^{6} + \frac{241736}{514229} a^{5} + \frac{53865}{514229} a^{4} + \frac{251305}{514229} a^{3} + \frac{10640}{514229} a^{2} - \frac{71365}{514229} a + \frac{342}{514229}$, $\frac{1}{514229} a^{21} + \frac{7608}{514229} a^{14} - \frac{5985}{514229} a^{13} - \frac{2948}{514229} a^{12} - \frac{57456}{514229} a^{11} - \frac{202529}{514229} a^{10} - \frac{219450}{514229} a^{9} + \frac{227943}{514229} a^{8} + \frac{103829}{514229} a^{7} + \frac{102036}{514229} a^{6} + \frac{137174}{514229} a^{5} - \frac{13238}{514229} a^{4} - \frac{148960}{514229} a^{3} + \frac{248171}{514229} a^{2} - \frac{16758}{514229} a - \frac{60419}{514229}$, $\frac{1}{514229} a^{22} - \frac{7315}{514229} a^{14} - \frac{117068}{514229} a^{13} - \frac{76076}{514229} a^{12} + \frac{141209}{514229} a^{11} + \frac{192369}{514229} a^{10} + \frac{192659}{514229} a^{9} - \frac{175471}{514229} a^{8} - \frac{236190}{514229} a^{7} - \frac{253846}{514229} a^{6} + \frac{196312}{514229} a^{5} + \frac{104589}{514229} a^{4} + \frac{211509}{514229} a^{3} - \frac{81928}{514229} a^{2} - \frac{174539}{514229} a - \frac{2660}{514229}$, $\frac{1}{514229} a^{23} - \frac{158912}{514229} a^{14} + \frac{33649}{514229} a^{13} + \frac{69622}{514229} a^{12} - \frac{177739}{514229} a^{11} + \frac{56045}{514229} a^{10} - \frac{220762}{514229} a^{9} + \frac{232692}{514229} a^{8} - \frac{47470}{514229} a^{7} + \frac{235672}{514229} a^{6} - \frac{215715}{514229} a^{5} + \frac{237749}{514229} a^{4} - \frac{86286}{514229} a^{3} - \frac{167979}{514229} a^{2} + \frac{107065}{514229} a - \frac{83688}{514229}$, $\frac{1}{514229} a^{24} + \frac{42504}{514229} a^{14} - \frac{117843}{514229} a^{13} - \frac{53769}{514229} a^{12} - \frac{40287}{514229} a^{11} - \frac{53156}{514229} a^{10} + \frac{224027}{514229} a^{9} - \frac{244836}{514229} a^{8} - \frac{245988}{514229} a^{7} - \frac{183490}{514229} a^{6} + \frac{141692}{514229} a^{5} + \frac{106607}{514229} a^{4} - \frac{32146}{514229} a^{3} + \frac{26731}{514229} a^{2} + \frac{243076}{514229} a + \frac{17710}{514229}$, $\frac{1}{514229} a^{25} - \frac{74986}{514229} a^{14} - \frac{177100}{514229} a^{13} + \frac{45482}{514229} a^{12} + \frac{235316}{514229} a^{11} - \frac{75587}{514229} a^{10} - \frac{106169}{514229} a^{9} + \frac{12089}{514229} a^{8} + \frac{230412}{514229} a^{7} - \frac{114075}{514229} a^{6} - \frac{18806}{514229} a^{5} + \frac{140162}{514229} a^{4} + \frac{246919}{514229} a^{3} - \frac{228076}{514229} a^{2} - \frac{105621}{514229} a + \frac{85714}{514229}$, $\frac{1}{514229} a^{26} - \frac{230230}{514229} a^{14} + \frac{141814}{514229} a^{13} + \frac{5725}{514229} a^{12} - \frac{11824}{514229} a^{11} - \frac{83347}{514229} a^{10} + \frac{64079}{514229} a^{9} - \frac{128079}{514229} a^{8} + \frac{204740}{514229} a^{7} - \frac{212156}{514229} a^{6} + \frac{202275}{514229} a^{5} + \frac{118019}{514229} a^{4} - \frac{14616}{514229} a^{3} - \frac{137846}{514229} a^{2} + \frac{182046}{514229} a - \frac{106260}{514229}$, $\frac{1}{514229} a^{27} + \frac{123934}{514229} a^{14} - \frac{140428}{514229} a^{13} + \frac{252085}{514229} a^{12} + \frac{68193}{514229} a^{11} + \frac{230006}{514229} a^{10} - \frac{64996}{514229} a^{9} + \frac{49543}{514229} a^{8} + \frac{31315}{514229} a^{7} + \frac{87845}{514229} a^{6} + \frac{240258}{514229} a^{5} + \frac{80507}{514229} a^{4} + \frac{212156}{514229} a^{3} - \frac{179845}{514229} a^{2} - \frac{252413}{514229} a - \frac{35760}{514229}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1514}$, which has order $24224$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 487075979.1876791 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.609725.2, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $28$ | $28$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{28}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||