Normalized defining polynomial
\( x^{28} - x^{27} + 5 x^{26} + 98 x^{25} - 43 x^{24} + 277 x^{23} + 2085 x^{22} - 152 x^{21} + 2790 x^{20} + 2322 x^{19} + 38446 x^{18} - 13267 x^{17} + 7013 x^{16} - 52161 x^{15} + 217434 x^{14} - 199373 x^{13} - 369218 x^{12} - 846630 x^{11} + 173519 x^{10} + 680690 x^{9} + 994183 x^{8} + 128151 x^{7} - 20587 x^{6} - 51405 x^{5} + 189716 x^{4} + 67288 x^{3} + 27471 x^{2} - 13272 x + 6241 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18020212407199631553450678294049740884820855712890625=5^{14}\cdot 43^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(215=5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{215}(64,·)$, $\chi_{215}(1,·)$, $\chi_{215}(194,·)$, $\chi_{215}(131,·)$, $\chi_{215}(4,·)$, $\chi_{215}(199,·)$, $\chi_{215}(11,·)$, $\chi_{215}(204,·)$, $\chi_{215}(16,·)$, $\chi_{215}(211,·)$, $\chi_{215}(84,·)$, $\chi_{215}(21,·)$, $\chi_{215}(214,·)$, $\chi_{215}(151,·)$, $\chi_{215}(156,·)$, $\chi_{215}(94,·)$, $\chi_{215}(161,·)$, $\chi_{215}(164,·)$, $\chi_{215}(39,·)$, $\chi_{215}(41,·)$, $\chi_{215}(171,·)$, $\chi_{215}(44,·)$, $\chi_{215}(174,·)$, $\chi_{215}(176,·)$, $\chi_{215}(51,·)$, $\chi_{215}(54,·)$, $\chi_{215}(121,·)$, $\chi_{215}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{7} a^{23} - \frac{3}{7} a^{22} + \frac{3}{7} a^{21} + \frac{3}{7} a^{20} + \frac{1}{7} a^{19} - \frac{3}{7} a^{18} - \frac{1}{7} a^{17} + \frac{3}{7} a^{13} + \frac{2}{7} a^{12} - \frac{1}{7} a^{11} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{1}{7} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{553} a^{24} - \frac{18}{553} a^{23} - \frac{1}{553} a^{22} + \frac{9}{79} a^{21} - \frac{135}{553} a^{20} + \frac{276}{553} a^{19} + \frac{9}{553} a^{18} + \frac{232}{553} a^{17} - \frac{37}{79} a^{16} + \frac{13}{79} a^{15} + \frac{213}{553} a^{14} + \frac{258}{553} a^{13} - \frac{73}{553} a^{12} + \frac{113}{553} a^{11} - \frac{187}{553} a^{10} - \frac{18}{553} a^{9} + \frac{29}{553} a^{8} - \frac{184}{553} a^{7} - \frac{4}{553} a^{6} - \frac{141}{553} a^{5} + \frac{12}{553} a^{4} + \frac{271}{553} a^{3} + \frac{242}{553} a - \frac{3}{7}$, $\frac{1}{553} a^{25} - \frac{9}{553} a^{23} + \frac{29}{79} a^{22} - \frac{265}{553} a^{21} - \frac{100}{553} a^{20} - \frac{3}{7} a^{19} - \frac{1}{553} a^{18} - \frac{270}{553} a^{17} - \frac{21}{79} a^{16} + \frac{192}{553} a^{15} + \frac{221}{553} a^{14} - \frac{11}{553} a^{13} - \frac{16}{553} a^{12} - \frac{128}{553} a^{11} - \frac{66}{553} a^{10} - \frac{216}{553} a^{9} + \frac{37}{79} a^{8} + \frac{239}{553} a^{7} - \frac{55}{553} a^{6} + \frac{239}{553} a^{5} + \frac{171}{553} a^{4} + \frac{59}{553} a^{3} - \frac{232}{553} a^{2} - \frac{226}{553} a - \frac{2}{7}$, $\frac{1}{12208639947162743} a^{26} + \frac{5562754799298}{12208639947162743} a^{25} - \frac{2219957351104}{12208639947162743} a^{24} + \frac{348422260258456}{12208639947162743} a^{23} + \frac{122692935896474}{1744091421023249} a^{22} - \frac{3221572792559999}{12208639947162743} a^{21} - \frac{433570732839492}{12208639947162743} a^{20} - \frac{3085318733222289}{12208639947162743} a^{19} - \frac{5268641230823780}{12208639947162743} a^{18} - \frac{6006053287712190}{12208639947162743} a^{17} - \frac{144061424137355}{12208639947162743} a^{16} - \frac{1719833418254509}{12208639947162743} a^{15} - \frac{2933367870771301}{12208639947162743} a^{14} + \frac{1443138597646920}{12208639947162743} a^{13} + \frac{2708406483601923}{12208639947162743} a^{12} - \frac{4398651889001861}{12208639947162743} a^{11} - \frac{5905686164691942}{12208639947162743} a^{10} - \frac{810227257344289}{1744091421023249} a^{9} + \frac{495394206705322}{12208639947162743} a^{8} + \frac{4859119367880684}{12208639947162743} a^{7} - \frac{810005115075384}{1744091421023249} a^{6} - \frac{2592251544400146}{12208639947162743} a^{5} - \frac{328617019755}{1744091421023249} a^{4} - \frac{6093461301584345}{12208639947162743} a^{3} - \frac{151763227237913}{1744091421023249} a^{2} + \frac{5184384534907988}{12208639947162743} a - \frac{29172598001914}{154539746166617}$, $\frac{1}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{27} - \frac{81768822143005338740966703059653042167774441678744265}{2462805101666521351224269894818808496818156905647154129891597873557473} a^{26} + \frac{1228365873295932154893776779988430968166566400316293302225310781134244}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{25} + \frac{2375680634841015307952828057997242216778675838601248889484757030550189}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{24} + \frac{251884781834966423992453600737462717392880554634631730973943200302740534}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{23} + \frac{1090636039552508585649428514885344787209673196045446516773910139669053116}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{22} - \frac{117805488931095617263536905774747166832554215921800151969642800958474020}{829965319261617695362578954553938463427718877203090941773468483388868401} a^{21} - \frac{1160349066506418439266542024180392126704084626905482606490106349104945258}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{20} - \frac{1445785985313549597789686222744371314700961146643330966584384312000603707}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{19} + \frac{1836145515108300105824534418813130139398251628443777326584230927346017327}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{18} + \frac{2384590857043749492653613439280382059268635214820538408512802828898600424}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{17} - \frac{905956616805744473489119792724640138133234513188469504841888217794312718}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{16} - \frac{1054790800633494818496986381329198683505490203925267365349871506083139705}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{15} - \frac{2811151822900750001553577209352716004470313878682293031014857055612492966}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{14} + \frac{2463659307876019342745726935166955316084992091987373419954118620864859826}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{13} - \frac{268432667566322690577028535587986658649508137898048474074190193090939630}{829965319261617695362578954553938463427718877203090941773468483388868401} a^{12} + \frac{2188671446581699946871549306838589546858136548464619056773631857848850213}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{11} + \frac{1283649560229118346836752838186767770109003095353596483696987307924683194}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{10} + \frac{1129771513872701883153883139265320203687894036214557987454131767892798630}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{9} + \frac{782811876439481649399648458106656628420701323716360723896118894062888042}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{8} + \frac{1568417932604945464321264323302452556684335929309417185645033034343340428}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{7} - \frac{1696189217370613750927277928537533902346525781585510706794586358770910486}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{6} + \frac{572793458664809108551649490865814545059046972703529629556964990000736028}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{5} + \frac{710977151382545535622103004275716080968449214491321592888705924868084922}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{4} - \frac{1025976625815882371450044830789405406987292324098419104806620713721272777}{5809757234831323867538052681877569243994032140421636592414279383722078807} a^{3} + \frac{229954727213078335377660494387213285692427652217562073814764077151764444}{829965319261617695362578954553938463427718877203090941773468483388868401} a^{2} - \frac{2651299515489003733903174244929808464594890016552105064651983713052383120}{5809757234831323867538052681877569243994032140421636592414279383722078807} a - \frac{19814813532314646108669241703056121761103419525112488580770386665328791}{73541230820649669209342439011108471442962432157235906233092144097747833}$
Class group and class number
$C_{1421}$, which has order $1421$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 263819853122.8475 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 43 | Data not computed | ||||||