Normalized defining polynomial
\( x^{28} - 14 x^{27} + 135 x^{26} - 936 x^{25} + 5336 x^{24} - 25422 x^{23} + 104543 x^{22} - 374022 x^{21} + 1179882 x^{20} - 3301012 x^{19} + 8217087 x^{18} - 18188118 x^{17} + 35780211 x^{16} - 62540558 x^{15} + 96760101 x^{14} - 131361794 x^{13} + 157184593 x^{12} - 171136062 x^{11} + 167465338 x^{10} - 127633640 x^{9} + 92192786 x^{8} - 142945196 x^{7} + 133893346 x^{6} + 62481562 x^{5} - 20350779 x^{4} - 221014676 x^{3} + 12443600 x^{2} + 131163708 x + 87247081 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(172491573797176117219488267129250761475686400000000000000=2^{28}\cdot 5^{14}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(580=2^{2}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{580}(1,·)$, $\chi_{580}(579,·)$, $\chi_{580}(51,·)$, $\chi_{580}(71,·)$, $\chi_{580}(499,·)$, $\chi_{580}(141,·)$, $\chi_{580}(399,·)$, $\chi_{580}(401,·)$, $\chi_{580}(531,·)$, $\chi_{580}(529,·)$, $\chi_{580}(151,·)$, $\chi_{580}(281,·)$, $\chi_{580}(411,·)$, $\chi_{580}(349,·)$, $\chi_{580}(231,·)$, $\chi_{580}(161,·)$, $\chi_{580}(419,·)$, $\chi_{580}(81,·)$, $\chi_{580}(169,·)$, $\chi_{580}(299,·)$, $\chi_{580}(429,·)$, $\chi_{580}(489,·)$, $\chi_{580}(49,·)$, $\chi_{580}(91,·)$, $\chi_{580}(179,·)$, $\chi_{580}(181,·)$, $\chi_{580}(439,·)$, $\chi_{580}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} - \frac{7}{17} a^{13} + \frac{7}{17} a^{12} - \frac{2}{17} a^{11} + \frac{4}{17} a^{10} - \frac{7}{17} a^{9} + \frac{1}{17} a^{8} - \frac{4}{17} a^{7} - \frac{2}{17} a^{6} + \frac{3}{17} a^{5} - \frac{3}{17} a^{4} - \frac{2}{17} a^{3} - \frac{6}{17} a^{2} - \frac{2}{17}$, $\frac{1}{17} a^{15} - \frac{8}{17} a^{13} - \frac{4}{17} a^{12} + \frac{7}{17} a^{11} + \frac{4}{17} a^{10} + \frac{3}{17} a^{9} + \frac{3}{17} a^{8} + \frac{4}{17} a^{7} + \frac{6}{17} a^{6} + \frac{1}{17} a^{5} - \frac{6}{17} a^{4} - \frac{3}{17} a^{3} - \frac{8}{17} a^{2} - \frac{2}{17} a + \frac{3}{17}$, $\frac{1}{17} a^{16} + \frac{8}{17} a^{13} - \frac{5}{17} a^{12} + \frac{5}{17} a^{11} + \frac{1}{17} a^{10} - \frac{2}{17} a^{9} - \frac{5}{17} a^{8} + \frac{8}{17} a^{7} + \frac{2}{17} a^{6} + \frac{1}{17} a^{5} + \frac{7}{17} a^{4} - \frac{7}{17} a^{3} + \frac{1}{17} a^{2} + \frac{3}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{17} + \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{17} a^{18} + \frac{1}{17} a^{2} - \frac{1}{17} a$, $\frac{1}{17} a^{19} + \frac{1}{17} a^{3} - \frac{1}{17} a^{2}$, $\frac{1}{17} a^{20} + \frac{1}{17} a^{4} - \frac{1}{17} a^{3}$, $\frac{1}{17} a^{21} + \frac{1}{17} a^{5} - \frac{1}{17} a^{4}$, $\frac{1}{289} a^{22} + \frac{6}{289} a^{21} + \frac{3}{289} a^{20} - \frac{2}{289} a^{19} - \frac{5}{289} a^{18} + \frac{7}{289} a^{17} - \frac{8}{289} a^{16} - \frac{4}{289} a^{15} + \frac{3}{289} a^{14} - \frac{53}{289} a^{13} + \frac{26}{289} a^{12} - \frac{74}{289} a^{11} - \frac{97}{289} a^{10} - \frac{5}{17} a^{9} + \frac{31}{289} a^{8} - \frac{92}{289} a^{7} - \frac{79}{289} a^{6} + \frac{36}{289} a^{5} + \frac{109}{289} a^{4} - \frac{28}{289} a^{3} - \frac{116}{289} a^{2} - \frac{89}{289} a - \frac{101}{289}$, $\frac{1}{289} a^{23} + \frac{1}{289} a^{21} - \frac{3}{289} a^{20} + \frac{7}{289} a^{19} + \frac{3}{289} a^{18} + \frac{1}{289} a^{17} - \frac{7}{289} a^{16} - \frac{7}{289} a^{15} - \frac{3}{289} a^{14} + \frac{21}{289} a^{13} + \frac{59}{289} a^{12} + \frac{7}{289} a^{11} + \frac{4}{289} a^{10} + \frac{65}{289} a^{9} - \frac{57}{289} a^{8} - \frac{54}{289} a^{7} + \frac{4}{17} a^{6} + \frac{46}{289} a^{5} + \frac{100}{289} a^{4} + \frac{69}{289} a^{3} + \frac{97}{289} a^{2} + \frac{144}{289} a - \frac{23}{289}$, $\frac{1}{699091} a^{24} - \frac{12}{699091} a^{23} - \frac{96}{699091} a^{22} + \frac{1562}{699091} a^{21} - \frac{19135}{699091} a^{20} + \frac{9769}{699091} a^{19} - \frac{11110}{699091} a^{18} + \frac{18104}{699091} a^{17} - \frac{12067}{699091} a^{16} + \frac{337}{11849} a^{15} - \frac{14497}{699091} a^{14} - \frac{99840}{699091} a^{13} - \frac{10346}{699091} a^{12} + \frac{98252}{699091} a^{11} - \frac{154556}{699091} a^{10} - \frac{318465}{699091} a^{9} + \frac{36553}{699091} a^{8} + \frac{238086}{699091} a^{7} - \frac{341828}{699091} a^{6} - \frac{17183}{41123} a^{5} - \frac{53830}{699091} a^{4} + \frac{95876}{699091} a^{3} + \frac{114442}{699091} a^{2} + \frac{37397}{699091} a + \frac{53848}{699091}$, $\frac{1}{699091} a^{25} - \frac{240}{699091} a^{23} + \frac{10}{17051} a^{22} - \frac{23}{41123} a^{21} - \frac{14236}{699091} a^{20} - \frac{17251}{699091} a^{19} + \frac{8153}{699091} a^{18} - \frac{434}{699091} a^{17} - \frac{1552}{699091} a^{16} + \frac{18484}{699091} a^{15} + \frac{14057}{699091} a^{14} + \frac{107510}{699091} a^{13} + \frac{97469}{699091} a^{12} + \frac{325377}{699091} a^{11} - \frac{322602}{699091} a^{10} + \frac{5547}{11849} a^{9} - \frac{269107}{699091} a^{8} + \frac{130070}{699091} a^{7} + \frac{335098}{699091} a^{6} + \frac{18539}{699091} a^{5} + \frac{190130}{699091} a^{4} + \frac{113510}{699091} a^{3} + \frac{300380}{699091} a^{2} + \frac{255874}{699091} a - \frac{217407}{699091}$, $\frac{1}{1062262637920062053570780638299451214565439} a^{26} - \frac{13}{1062262637920062053570780638299451214565439} a^{25} - \frac{2443110477060102718059261694852728}{5561584491728073578904610671724875468929} a^{24} + \frac{5599609213421755429791827804602453226}{1062262637920062053570780638299451214565439} a^{23} - \frac{673403639377124155872152995275439409549}{1062262637920062053570780638299451214565439} a^{22} + \frac{7171323177982415027304127542269096721861}{1062262637920062053570780638299451214565439} a^{21} + \frac{10459974582199964606272627889471564247951}{1062262637920062053570780638299451214565439} a^{20} + \frac{20972986083034678170578723189526852541848}{1062262637920062053570780638299451214565439} a^{19} + \frac{20961832926884221784782111780179155281566}{1062262637920062053570780638299451214565439} a^{18} + \frac{5973338307490959217265205925635566257464}{1062262637920062053570780638299451214565439} a^{17} + \frac{23501830750998438788707016380731955630455}{1062262637920062053570780638299451214565439} a^{16} - \frac{30707640935402440668059517742753380842644}{1062262637920062053570780638299451214565439} a^{15} - \frac{8714875265513482236560489184648106675820}{1062262637920062053570780638299451214565439} a^{14} - \frac{477105721937796538547593874964868749802655}{1062262637920062053570780638299451214565439} a^{13} - \frac{83912561367692695030007099276471326082333}{1062262637920062053570780638299451214565439} a^{12} + \frac{520851636918288349868245332731196169142204}{1062262637920062053570780638299451214565439} a^{11} - \frac{175356005028865672682265845031144023282097}{1062262637920062053570780638299451214565439} a^{10} + \frac{125690744650682074191864776486133132944285}{1062262637920062053570780638299451214565439} a^{9} + \frac{427710433817327287014105476974945177501323}{1062262637920062053570780638299451214565439} a^{8} - \frac{355635685107908953290958969326790470894625}{1062262637920062053570780638299451214565439} a^{7} - \frac{287546035167724077569319792095078975395389}{1062262637920062053570780638299451214565439} a^{6} - \frac{70019255007814551201101540448101193013552}{1062262637920062053570780638299451214565439} a^{5} - \frac{357548435002324002501921881341108983892204}{1062262637920062053570780638299451214565439} a^{4} - \frac{207502148188233810500801178809774877709895}{1062262637920062053570780638299451214565439} a^{3} - \frac{433061119589042155183933712543563635922683}{1062262637920062053570780638299451214565439} a^{2} - \frac{300153323594753035014204493283785191674819}{1062262637920062053570780638299451214565439} a + \frac{1293493476895187939031263814164803360814}{5561584491728073578904610671724875468929}$, $\frac{1}{198579718519083172634440928744284304174703042165919} a^{27} + \frac{93470147}{198579718519083172634440928744284304174703042165919} a^{26} + \frac{2688550696167383675129948486288140170412792}{4843407768758126161815632408397178150602513223559} a^{25} - \frac{1227712070659461415714711505223409561743909}{198579718519083172634440928744284304174703042165919} a^{24} - \frac{850751535235086271647968054945820533625907333}{198579718519083172634440928744284304174703042165919} a^{23} - \frac{316101249525180007755053928490590587968299453153}{198579718519083172634440928744284304174703042165919} a^{22} + \frac{4037697054050971217618913159486374264754964762254}{198579718519083172634440928744284304174703042165919} a^{21} - \frac{5050824828576704296597864902741988094598355316129}{198579718519083172634440928744284304174703042165919} a^{20} + \frac{3230555228392085672287651683195596312965042200625}{198579718519083172634440928744284304174703042165919} a^{19} - \frac{1838256407576669804818217580184335525183650048025}{198579718519083172634440928744284304174703042165919} a^{18} - \frac{4304599046041821625923243419809488978833564721827}{198579718519083172634440928744284304174703042165919} a^{17} + \frac{3825730795610832826730348087100598350223718312823}{198579718519083172634440928744284304174703042165919} a^{16} + \frac{835735294105891453159873562960608249412440044986}{198579718519083172634440928744284304174703042165919} a^{15} - \frac{3668184353226236164945215345692010340332322147203}{198579718519083172634440928744284304174703042165919} a^{14} + \frac{72532414708622525484063273846508836167341758239566}{198579718519083172634440928744284304174703042165919} a^{13} + \frac{63625426498102429800522826533602678681392128776359}{198579718519083172634440928744284304174703042165919} a^{12} + \frac{78462966786746429906621602196724595332525906499511}{198579718519083172634440928744284304174703042165919} a^{11} + \frac{79625853663895909138188677756075105691933910094080}{198579718519083172634440928744284304174703042165919} a^{10} - \frac{78638574227717774604083801504715532586460316894186}{198579718519083172634440928744284304174703042165919} a^{9} - \frac{54618551678796976314370898527680544033809457275901}{198579718519083172634440928744284304174703042165919} a^{8} - \frac{2714685594035600197868787879063543898098858686181}{11681159912887245449084760514369664951453120127407} a^{7} - \frac{90681865336137240000178693364857284050834273183458}{198579718519083172634440928744284304174703042165919} a^{6} + \frac{20392993170938463020208839547822305739195713451747}{198579718519083172634440928744284304174703042165919} a^{5} - \frac{4934165645243455175356975243415270159164468234634}{11681159912887245449084760514369664951453120127407} a^{4} + \frac{1579306399538272785114882985796557670357204026338}{11681159912887245449084760514369664951453120127407} a^{3} + \frac{16422677386144072523364564951517235192628996271744}{198579718519083172634440928744284304174703042165919} a^{2} - \frac{1185031666496251521208797218870690551969819712292}{3365757941001409705668490317699733969062763426541} a + \frac{519058311317623965095018258375075476111354155579}{1039684390152267919552046747352273843846612786209}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{5556}$, which has order $711168$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34681517373.86067 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |