Normalized defining polynomial
\( x^{28} + 77 x^{26} + 2586 x^{24} + 49961 x^{22} + 617080 x^{20} + 5126412 x^{18} + 29379286 x^{16} + 117391053 x^{14} + 327131195 x^{12} + 629891623 x^{10} + 820109500 x^{8} + 692717515 x^{6} + 350752457 x^{4} + 89938214 x^{2} + 7123561 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(172491573797176117219488267129250761475686400000000000000=2^{28}\cdot 5^{14}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(580=2^{2}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{580}(209,·)$, $\chi_{580}(129,·)$, $\chi_{580}(459,·)$, $\chi_{580}(1,·)$, $\chi_{580}(9,·)$, $\chi_{580}(339,·)$, $\chi_{580}(139,·)$, $\chi_{580}(141,·)$, $\chi_{580}(401,·)$, $\chi_{580}(531,·)$, $\chi_{580}(149,·)$, $\chi_{580}(151,·)$, $\chi_{580}(281,·)$, $\chi_{580}(411,·)$, $\chi_{580}(199,·)$, $\chi_{580}(231,·)$, $\chi_{580}(289,·)$, $\chi_{580}(219,·)$, $\chi_{580}(81,·)$, $\chi_{580}(161,·)$, $\chi_{580}(71,·)$, $\chi_{580}(109,·)$, $\chi_{580}(239,·)$, $\chi_{580}(91,·)$, $\chi_{580}(51,·)$, $\chi_{580}(181,·)$, $\chi_{580}(59,·)$, $\chi_{580}(469,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} + \frac{7}{17} a^{13} - \frac{2}{17} a^{11} + \frac{3}{17} a^{9} + \frac{4}{17} a^{7} - \frac{6}{17} a^{5} - \frac{8}{17} a^{3} - \frac{5}{17} a$, $\frac{1}{17} a^{16} + \frac{7}{17} a^{14} - \frac{2}{17} a^{12} + \frac{3}{17} a^{10} + \frac{4}{17} a^{8} - \frac{6}{17} a^{6} - \frac{8}{17} a^{4} - \frac{5}{17} a^{2}$, $\frac{1}{17} a^{17} + \frac{1}{17} a$, $\frac{1}{17} a^{18} + \frac{1}{17} a^{2}$, $\frac{1}{17} a^{19} + \frac{1}{17} a^{3}$, $\frac{1}{17} a^{20} + \frac{1}{17} a^{4}$, $\frac{1}{17} a^{21} + \frac{1}{17} a^{5}$, $\frac{1}{17} a^{22} + \frac{1}{17} a^{6}$, $\frac{1}{17} a^{23} + \frac{1}{17} a^{7}$, $\frac{1}{17051} a^{24} - \frac{375}{17051} a^{22} + \frac{178}{17051} a^{20} + \frac{279}{17051} a^{18} + \frac{405}{17051} a^{16} + \frac{4705}{17051} a^{14} + \frac{618}{17051} a^{12} + \frac{2524}{17051} a^{10} - \frac{79}{17051} a^{8} - \frac{401}{1003} a^{6} + \frac{6730}{17051} a^{4} + \frac{2385}{17051} a^{2} + \frac{4}{59}$, $\frac{1}{17051} a^{25} - \frac{375}{17051} a^{23} + \frac{178}{17051} a^{21} + \frac{279}{17051} a^{19} + \frac{405}{17051} a^{17} - \frac{310}{17051} a^{15} - \frac{385}{17051} a^{13} - \frac{4497}{17051} a^{11} + \frac{1927}{17051} a^{9} + \frac{25}{59} a^{7} + \frac{2718}{17051} a^{5} + \frac{8403}{17051} a^{3} - \frac{463}{1003} a$, $\frac{1}{340532571829552933694635979} a^{26} - \frac{527456634554128931294}{340532571829552933694635979} a^{24} + \frac{391356588901876737172757}{20031327754679584334978587} a^{22} + \frac{4782418411027257570682945}{340532571829552933694635979} a^{20} - \frac{9049790686602605740496699}{340532571829552933694635979} a^{18} + \frac{1459479274961338814325692}{340532571829552933694635979} a^{16} - \frac{162490238234833123125302075}{340532571829552933694635979} a^{14} - \frac{157503082471827184805599373}{340532571829552933694635979} a^{12} - \frac{111361964142743013585441404}{340532571829552933694635979} a^{10} - \frac{46761847940908268667235868}{340532571829552933694635979} a^{8} + \frac{90633762127330264655712826}{340532571829552933694635979} a^{6} - \frac{98527981733187923792743972}{340532571829552933694635979} a^{4} - \frac{87559976294264684943780810}{340532571829552933694635979} a^{2} - \frac{266738955045537072512434}{1178313397334093196175211}$, $\frac{1}{53463613777239810590057848703} a^{27} + \frac{1517299970439871005124910}{53463613777239810590057848703} a^{25} - \frac{1243597366800683388128411589}{53463613777239810590057848703} a^{23} - \frac{1487801141981528490045428399}{53463613777239810590057848703} a^{21} - \frac{727361620549574300432595242}{53463613777239810590057848703} a^{19} - \frac{1026389288643622397361155822}{53463613777239810590057848703} a^{17} + \frac{628956907916908898420925666}{53463613777239810590057848703} a^{15} - \frac{24599177997718865804376735030}{53463613777239810590057848703} a^{13} - \frac{16612163209206672075230848313}{53463613777239810590057848703} a^{11} + \frac{26414901715780020558258908965}{53463613777239810590057848703} a^{9} + \frac{2483528643737189762840951490}{53463613777239810590057848703} a^{7} - \frac{432403952917817900687989348}{3144918457484694740591638159} a^{5} + \frac{1769701594866435838302150074}{53463613777239810590057848703} a^{3} - \frac{93387380960170412093448899}{3144918457484694740591638159} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{2436}$, which has order $311808$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73869644668.60387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |