Normalized defining polynomial
\( x^{28} + 116 x^{26} + 5162 x^{24} + 117160 x^{22} + 1511944 x^{20} + 11760544 x^{18} + 56876888 x^{16} + 173227904 x^{14} + 331475104 x^{12} + 392753728 x^{10} + 281553344 x^{8} + 117551616 x^{6} + 26535232 x^{4} + 2798848 x^{2} + 107648 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15909539583539461596949590009846202679084771957405055149146112=2^{77}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(464=2^{4}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{464}(1,·)$, $\chi_{464}(323,·)$, $\chi_{464}(51,·)$, $\chi_{464}(257,·)$, $\chi_{464}(393,·)$, $\chi_{464}(267,·)$, $\chi_{464}(115,·)$, $\chi_{464}(401,·)$, $\chi_{464}(67,·)$, $\chi_{464}(25,·)$, $\chi_{464}(281,·)$, $\chi_{464}(283,·)$, $\chi_{464}(297,·)$, $\chi_{464}(161,·)$, $\chi_{464}(35,·)$, $\chi_{464}(65,·)$, $\chi_{464}(81,·)$, $\chi_{464}(169,·)$, $\chi_{464}(299,·)$, $\chi_{464}(419,·)$, $\chi_{464}(49,·)$, $\chi_{464}(91,·)$, $\chi_{464}(179,·)$, $\chi_{464}(233,·)$, $\chi_{464}(313,·)$, $\chi_{464}(347,·)$, $\chi_{464}(187,·)$, $\chi_{464}(411,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{3944} a^{14} + \frac{1}{136} a^{12} + \frac{3}{34} a^{10} + \frac{1}{17} a^{8} + \frac{7}{34} a^{6} - \frac{1}{34} a^{4} - \frac{6}{17} a^{2} - \frac{4}{17}$, $\frac{1}{3944} a^{15} + \frac{1}{136} a^{13} + \frac{3}{34} a^{11} + \frac{1}{17} a^{9} + \frac{7}{34} a^{7} - \frac{1}{34} a^{5} - \frac{6}{17} a^{3} - \frac{4}{17} a$, $\frac{1}{7888} a^{16} + \frac{7}{17}$, $\frac{1}{7888} a^{17} + \frac{7}{17} a$, $\frac{1}{7888} a^{18} + \frac{7}{17} a^{2}$, $\frac{1}{7888} a^{19} + \frac{7}{17} a^{3}$, $\frac{1}{646816} a^{20} - \frac{9}{161704} a^{18} - \frac{1}{40426} a^{16} + \frac{1}{40426} a^{14} + \frac{21}{5576} a^{12} + \frac{143}{2788} a^{10} + \frac{339}{2788} a^{8} - \frac{261}{1394} a^{6} + \frac{10}{697} a^{4} - \frac{167}{697} a^{2} - \frac{55}{697}$, $\frac{1}{646816} a^{21} - \frac{9}{161704} a^{19} - \frac{1}{40426} a^{17} + \frac{1}{40426} a^{15} + \frac{21}{5576} a^{13} + \frac{143}{2788} a^{11} + \frac{339}{2788} a^{9} - \frac{261}{1394} a^{7} + \frac{10}{697} a^{5} - \frac{167}{697} a^{3} - \frac{55}{697} a$, $\frac{1}{646816} a^{22} + \frac{7}{323408} a^{16} + \frac{15}{161704} a^{14} + \frac{38}{697} a^{12} - \frac{335}{2788} a^{10} - \frac{331}{2788} a^{8} + \frac{95}{1394} a^{6} - \frac{135}{697} a^{4} + \frac{165}{697} a^{2} + \frac{193}{697}$, $\frac{1}{646816} a^{23} + \frac{7}{323408} a^{17} + \frac{15}{161704} a^{15} + \frac{38}{697} a^{13} - \frac{335}{2788} a^{11} - \frac{331}{2788} a^{9} + \frac{95}{1394} a^{7} - \frac{135}{697} a^{5} + \frac{165}{697} a^{3} + \frac{193}{697} a$, $\frac{1}{1297512896} a^{24} - \frac{209}{648756448} a^{22} - \frac{3}{11185456} a^{20} - \frac{346}{20273639} a^{18} - \frac{15513}{324378224} a^{16} - \frac{1883}{162189112} a^{14} + \frac{70603}{2796364} a^{12} - \frac{212697}{2796364} a^{10} + \frac{83167}{1398182} a^{8} + \frac{155351}{699091} a^{6} - \frac{59686}{699091} a^{4} - \frac{226218}{699091} a^{2} + \frac{340652}{699091}$, $\frac{1}{1297512896} a^{25} - \frac{209}{648756448} a^{23} - \frac{3}{11185456} a^{21} - \frac{346}{20273639} a^{19} - \frac{15513}{324378224} a^{17} - \frac{1883}{162189112} a^{15} + \frac{70603}{2796364} a^{13} - \frac{212697}{2796364} a^{11} + \frac{83167}{1398182} a^{9} + \frac{155351}{699091} a^{7} - \frac{59686}{699091} a^{5} - \frac{226218}{699091} a^{3} + \frac{340652}{699091} a$, $\frac{1}{5738950142010944} a^{26} + \frac{1728965}{5738950142010944} a^{24} - \frac{86574517}{1434737535502736} a^{22} - \frac{274957611}{358684383875684} a^{20} - \frac{74076924143}{1434737535502736} a^{18} - \frac{66088236903}{1434737535502736} a^{16} + \frac{177733425}{17496799213448} a^{14} + \frac{382677974351}{24736854060392} a^{12} - \frac{42916795289}{3092106757549} a^{10} + \frac{1241386027069}{12368427030196} a^{8} - \frac{990662959559}{6184213515098} a^{6} + \frac{149424870190}{3092106757549} a^{4} + \frac{522738787187}{3092106757549} a^{2} - \frac{1447807015172}{3092106757549}$, $\frac{1}{5738950142010944} a^{27} + \frac{1728965}{5738950142010944} a^{25} - \frac{86574517}{1434737535502736} a^{23} - \frac{274957611}{358684383875684} a^{21} - \frac{74076924143}{1434737535502736} a^{19} - \frac{66088236903}{1434737535502736} a^{17} + \frac{177733425}{17496799213448} a^{15} + \frac{382677974351}{24736854060392} a^{13} - \frac{42916795289}{3092106757549} a^{11} + \frac{1241386027069}{12368427030196} a^{9} - \frac{990662959559}{6184213515098} a^{7} + \frac{149424870190}{3092106757549} a^{5} + \frac{522738787187}{3092106757549} a^{3} - \frac{1447807015172}{3092106757549} a$
Class group and class number
Not computed
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.1722368.6, 7.7.594823321.1, 14.14.742003380228915810271232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $28$ | $28$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ | $28$ | $28$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | $28$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{28}$ | $28$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 29 | Data not computed | ||||||