Normalized defining polynomial
\( x^{28} - 23 x^{26} + 170 x^{24} - 243 x^{22} - 2160 x^{20} + 8804 x^{18} - 13066 x^{16} - 10755 x^{14} + 322699 x^{12} - 596165 x^{10} + 516968 x^{8} + 3918063 x^{6} - 1962803 x^{4} - 4216942 x^{2} + 3728761 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135171579942192030712001098144632895138136441638354944=2^{28}\cdot 3^{14}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(348=2^{2}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{348}(149,·)$, $\chi_{348}(1,·)$, $\chi_{348}(67,·)$, $\chi_{348}(227,·)$, $\chi_{348}(5,·)$, $\chi_{348}(151,·)$, $\chi_{348}(335,·)$, $\chi_{348}(245,·)$, $\chi_{348}(209,·)$, $\chi_{348}(83,·)$, $\chi_{348}(277,·)$, $\chi_{348}(23,·)$, $\chi_{348}(25,·)$, $\chi_{348}(283,·)$, $\chi_{348}(187,·)$, $\chi_{348}(295,·)$, $\chi_{348}(169,·)$, $\chi_{348}(107,·)$, $\chi_{348}(173,·)$, $\chi_{348}(239,·)$, $\chi_{348}(49,·)$, $\chi_{348}(91,·)$, $\chi_{348}(115,·)$, $\chi_{348}(181,·)$, $\chi_{348}(313,·)$, $\chi_{348}(59,·)$, $\chi_{348}(125,·)$, $\chi_{348}(341,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} - \frac{5}{17} a^{12} + \frac{8}{17} a^{10} - \frac{6}{17} a^{8} - \frac{4}{17} a^{6} + \frac{3}{17} a^{4} + \frac{2}{17} a^{2} + \frac{7}{17}$, $\frac{1}{17} a^{15} - \frac{5}{17} a^{13} + \frac{8}{17} a^{11} - \frac{6}{17} a^{9} - \frac{4}{17} a^{7} + \frac{3}{17} a^{5} + \frac{2}{17} a^{3} + \frac{7}{17} a$, $\frac{1}{17} a^{16} + \frac{1}{17}$, $\frac{1}{17} a^{17} + \frac{1}{17} a$, $\frac{1}{17} a^{18} + \frac{1}{17} a^{2}$, $\frac{1}{17} a^{19} + \frac{1}{17} a^{3}$, $\frac{1}{17} a^{20} + \frac{1}{17} a^{4}$, $\frac{1}{17} a^{21} + \frac{1}{17} a^{5}$, $\frac{1}{17} a^{22} + \frac{1}{17} a^{6}$, $\frac{1}{17} a^{23} + \frac{1}{17} a^{7}$, $\frac{1}{11849} a^{24} + \frac{62}{11849} a^{22} - \frac{161}{11849} a^{20} - \frac{144}{11849} a^{18} + \frac{80}{11849} a^{16} - \frac{312}{11849} a^{14} - \frac{3948}{11849} a^{12} + \frac{5086}{11849} a^{10} + \frac{581}{11849} a^{8} + \frac{1463}{11849} a^{6} + \frac{5074}{11849} a^{4} + \frac{3227}{11849} a^{2} - \frac{3855}{11849}$, $\frac{1}{11849} a^{25} + \frac{62}{11849} a^{23} - \frac{161}{11849} a^{21} - \frac{144}{11849} a^{19} + \frac{80}{11849} a^{17} - \frac{312}{11849} a^{15} - \frac{3948}{11849} a^{13} + \frac{5086}{11849} a^{11} + \frac{581}{11849} a^{9} + \frac{1463}{11849} a^{7} + \frac{5074}{11849} a^{5} + \frac{3227}{11849} a^{3} - \frac{3855}{11849} a$, $\frac{1}{1460221973464489184256054597610403932543} a^{26} - \frac{5529588300095160569722295175670422}{1460221973464489184256054597610403932543} a^{24} + \frac{2432374274383085773122151201269708054}{1460221973464489184256054597610403932543} a^{22} + \frac{9080289909388768016998968188406185285}{1460221973464489184256054597610403932543} a^{20} - \frac{30716677000830694114488107579540407058}{1460221973464489184256054597610403932543} a^{18} + \frac{18717677718709426689306190563170496804}{1460221973464489184256054597610403932543} a^{16} + \frac{4585493059984634265318074942424400318}{1460221973464489184256054597610403932543} a^{14} + \frac{181109791616211294184981396517714431017}{1460221973464489184256054597610403932543} a^{12} + \frac{560208454826597325047347273747072296373}{1460221973464489184256054597610403932543} a^{10} + \frac{40938051901674910661040933149930614282}{1460221973464489184256054597610403932543} a^{8} - \frac{13019149278448987656249923805372309538}{1460221973464489184256054597610403932543} a^{6} + \frac{87815925876609383209731203055352513646}{1460221973464489184256054597610403932543} a^{4} - \frac{154796367872558602637123027447960668640}{1460221973464489184256054597610403932543} a^{2} + \frac{86448603603552063916464017919642131341}{1460221973464489184256054597610403932543}$, $\frac{1}{2819688630759928614798441427985689993740533} a^{27} - \frac{107713691020316598413147300007344886140}{2819688630759928614798441427985689993740533} a^{25} + \frac{4147348051167338543893481703570948657092}{2819688630759928614798441427985689993740533} a^{23} - \frac{46641986321362097871303933091902404774972}{2819688630759928614798441427985689993740533} a^{21} - \frac{54525500746882141588607110861290655992051}{2819688630759928614798441427985689993740533} a^{19} + \frac{30226790175272042771408786921819196622272}{2819688630759928614798441427985689993740533} a^{17} - \frac{26259569052194922905428716180887341529929}{2819688630759928614798441427985689993740533} a^{15} + \frac{952553063545897961651796967941517597733704}{2819688630759928614798441427985689993740533} a^{13} - \frac{1378109803489703684059257279010665396462342}{2819688630759928614798441427985689993740533} a^{11} - \frac{585296970240387041442754077662144991568270}{2819688630759928614798441427985689993740533} a^{9} + \frac{938177688645474849315851489278345357298031}{2819688630759928614798441427985689993740533} a^{7} - \frac{389921957788863404960690575941070308916348}{2819688630759928614798441427985689993740533} a^{5} + \frac{1176828602398140687246042860341679591897945}{2819688630759928614798441427985689993740533} a^{3} + \frac{1263089109635468833785382960122725310735961}{2819688630759928614798441427985689993740533} a$
Class group and class number
$C_{2}\times C_{4}\times C_{12}\times C_{12}$, which has order $1152$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 532329986474.6399 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||