Normalized defining polynomial
\( x^{28} - 29 x^{26} + 551 x^{24} - 5916 x^{22} + 45675 x^{20} - 232000 x^{18} + 854369 x^{16} - 1923396 x^{14} + 3056194 x^{12} - 2610464 x^{10} + 1563419 x^{8} - 459186 x^{6} + 96715 x^{4} - 10933 x^{2} + 841 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135171579942192030712001098144632895138136441638354944=2^{28}\cdot 3^{14}\cdot 29^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(348=2^{2}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{348}(1,·)$, $\chi_{348}(323,·)$, $\chi_{348}(197,·)$, $\chi_{348}(257,·)$, $\chi_{348}(115,·)$, $\chi_{348}(67,·)$, $\chi_{348}(277,·)$, $\chi_{348}(151,·)$, $\chi_{348}(25,·)$, $\chi_{348}(71,·)$, $\chi_{348}(283,·)$, $\chi_{348}(161,·)$, $\chi_{348}(35,·)$, $\chi_{348}(65,·)$, $\chi_{348}(167,·)$, $\chi_{348}(169,·)$, $\chi_{348}(299,·)$, $\chi_{348}(281,·)$, $\chi_{348}(49,·)$, $\chi_{348}(91,·)$, $\chi_{348}(179,·)$, $\chi_{348}(53,·)$, $\chi_{348}(233,·)$, $\chi_{348}(313,·)$, $\chi_{348}(347,·)$, $\chi_{348}(187,·)$, $\chi_{348}(295,·)$, $\chi_{348}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14}$, $\frac{1}{29} a^{15}$, $\frac{1}{29} a^{16}$, $\frac{1}{29} a^{17}$, $\frac{1}{29} a^{18}$, $\frac{1}{29} a^{19}$, $\frac{1}{493} a^{20} + \frac{5}{493} a^{18} + \frac{5}{493} a^{16} + \frac{7}{493} a^{14} + \frac{7}{17} a^{12} + \frac{7}{17} a^{10} + \frac{7}{17} a^{8} + \frac{5}{17} a^{6} - \frac{5}{17} a^{4} - \frac{5}{17} a^{2} + \frac{3}{17}$, $\frac{1}{493} a^{21} + \frac{5}{493} a^{19} + \frac{5}{493} a^{17} + \frac{7}{493} a^{15} + \frac{7}{17} a^{13} + \frac{7}{17} a^{11} + \frac{7}{17} a^{9} + \frac{5}{17} a^{7} - \frac{5}{17} a^{5} - \frac{5}{17} a^{3} + \frac{3}{17} a$, $\frac{1}{493} a^{22} - \frac{3}{493} a^{18} - \frac{1}{493} a^{16} - \frac{2}{493} a^{14} + \frac{6}{17} a^{12} + \frac{6}{17} a^{10} + \frac{4}{17} a^{8} + \frac{4}{17} a^{6} + \frac{3}{17} a^{4} - \frac{6}{17} a^{2} + \frac{2}{17}$, $\frac{1}{493} a^{23} - \frac{3}{493} a^{19} - \frac{1}{493} a^{17} - \frac{2}{493} a^{15} + \frac{6}{17} a^{13} + \frac{6}{17} a^{11} + \frac{4}{17} a^{9} + \frac{4}{17} a^{7} + \frac{3}{17} a^{5} - \frac{6}{17} a^{3} + \frac{2}{17} a$, $\frac{1}{1192567} a^{24} + \frac{75}{1192567} a^{22} - \frac{46}{1192567} a^{20} - \frac{6697}{1192567} a^{18} + \frac{3958}{1192567} a^{16} + \frac{10518}{1192567} a^{14} + \frac{4847}{41123} a^{12} + \frac{1076}{2419} a^{10} + \frac{11495}{41123} a^{8} - \frac{1119}{41123} a^{6} - \frac{14662}{41123} a^{4} + \frac{13163}{41123} a^{2} - \frac{7153}{41123}$, $\frac{1}{1192567} a^{25} + \frac{75}{1192567} a^{23} - \frac{46}{1192567} a^{21} - \frac{6697}{1192567} a^{19} + \frac{3958}{1192567} a^{17} + \frac{10518}{1192567} a^{15} + \frac{4847}{41123} a^{13} + \frac{1076}{2419} a^{11} + \frac{11495}{41123} a^{9} - \frac{1119}{41123} a^{7} - \frac{14662}{41123} a^{5} + \frac{13163}{41123} a^{3} - \frac{7153}{41123} a$, $\frac{1}{4148797675963432116791257813} a^{26} + \frac{730783171372417513830}{4148797675963432116791257813} a^{24} + \frac{148172050719390875156370}{4148797675963432116791257813} a^{22} + \frac{418083742714354067818507}{4148797675963432116791257813} a^{20} + \frac{14601585867910114087102059}{4148797675963432116791257813} a^{18} - \frac{15061120271947858903718923}{4148797675963432116791257813} a^{16} + \frac{21320472958448858331990261}{4148797675963432116791257813} a^{14} - \frac{66993927239283321874225162}{143061988826325245406595097} a^{12} + \frac{1122902977505565796330547}{8415411107430896788623241} a^{10} + \frac{32905080252152390412532207}{143061988826325245406595097} a^{8} + \frac{8663447507497570322530813}{143061988826325245406595097} a^{6} + \frac{41591129011249661476173452}{143061988826325245406595097} a^{4} + \frac{70166325602009033148484648}{143061988826325245406595097} a^{2} + \frac{1361671935242583618846075}{8415411107430896788623241}$, $\frac{1}{4148797675963432116791257813} a^{27} + \frac{730783171372417513830}{4148797675963432116791257813} a^{25} + \frac{148172050719390875156370}{4148797675963432116791257813} a^{23} + \frac{418083742714354067818507}{4148797675963432116791257813} a^{21} + \frac{14601585867910114087102059}{4148797675963432116791257813} a^{19} - \frac{15061120271947858903718923}{4148797675963432116791257813} a^{17} + \frac{21320472958448858331990261}{4148797675963432116791257813} a^{15} - \frac{66993927239283321874225162}{143061988826325245406595097} a^{13} + \frac{1122902977505565796330547}{8415411107430896788623241} a^{11} + \frac{32905080252152390412532207}{143061988826325245406595097} a^{9} + \frac{8663447507497570322530813}{143061988826325245406595097} a^{7} + \frac{41591129011249661476173452}{143061988826325245406595097} a^{5} + \frac{70166325602009033148484648}{143061988826325245406595097} a^{3} + \frac{1361671935242583618846075}{8415411107430896788623241} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{12}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{17794974015976247830}{100887524644686236821031} a^{26} - \frac{513845098838430797670}{100887524644686236821031} a^{24} + \frac{9741588466385237087800}{100887524644686236821031} a^{22} - \frac{104075676595349242494679}{100887524644686236821031} a^{20} + \frac{800053248285444887451775}{100887524644686236821031} a^{18} - \frac{139003485903995192324975}{3478880160161594373139} a^{16} + \frac{14718196606973246016914140}{100887524644686236821031} a^{14} - \frac{1119818527282558012165915}{3478880160161594373139} a^{12} + \frac{1745638968351759372561100}{3478880160161594373139} a^{10} - \frac{1404909169814334023239958}{3478880160161594373139} a^{8} + \frac{815179770710311150035865}{3478880160161594373139} a^{6} - \frac{202696972803554977446945}{3478880160161594373139} a^{4} + \frac{49449697077842951634753}{3478880160161594373139} a^{2} - \frac{2088700679450172287950}{3478880160161594373139} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4155697700585.085 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||