Normalized defining polynomial
\( x^{28} + 58 x^{26} + 1508 x^{24} + 23200 x^{22} + 234784 x^{20} + 1643488 x^{18} + 8145984 x^{16} + 28775424 x^{14} + 71938560 x^{12} + 124693504 x^{10} + 144381952 x^{8} + 105005056 x^{6} + 43237376 x^{4} + 8314880 x^{2} + 475136 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13427827737836760536055607671312169337571202392129536=2^{42}\cdot 29^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(232=2^{3}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{232}(1,·)$, $\chi_{232}(133,·)$, $\chi_{232}(129,·)$, $\chi_{232}(9,·)$, $\chi_{232}(77,·)$, $\chi_{232}(205,·)$, $\chi_{232}(81,·)$, $\chi_{232}(21,·)$, $\chi_{232}(121,·)$, $\chi_{232}(25,·)$, $\chi_{232}(101,·)$, $\chi_{232}(157,·)$, $\chi_{232}(69,·)$, $\chi_{232}(161,·)$, $\chi_{232}(229,·)$, $\chi_{232}(37,·)$, $\chi_{232}(65,·)$, $\chi_{232}(209,·)$, $\chi_{232}(169,·)$, $\chi_{232}(225,·)$, $\chi_{232}(221,·)$, $\chi_{232}(49,·)$, $\chi_{232}(189,·)$, $\chi_{232}(57,·)$, $\chi_{232}(33,·)$, $\chi_{232}(61,·)$, $\chi_{232}(85,·)$, $\chi_{232}(213,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{48802}$, which has order $390416$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 487075979.1876791 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 28 |
| The 28 conjugacy class representatives for $C_{28}$ |
| Character table for $C_{28}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.1560896.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $28$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{4}$ | $28$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{7}$ | $28$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | R | $28$ | $28$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{7}$ | $28$ | $28$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 29 | Data not computed | ||||||