Normalized defining polynomial
\( x^{28} - 2 x^{27} - 23 x^{26} + 96 x^{25} + 172 x^{24} - 1112 x^{23} + 140 x^{22} + 4108 x^{21} - 1323 x^{20} + 11954 x^{19} - 31809 x^{18} - 147466 x^{17} + 208293 x^{16} + 688988 x^{15} + 539117 x^{14} - 2252476 x^{13} - 6512215 x^{12} + 4195314 x^{11} + 22992711 x^{10} + 13208998 x^{9} - 22322709 x^{8} - 35926296 x^{7} + 14087468 x^{6} + 33378830 x^{5} + 6900339 x^{4} - 15784328 x^{3} - 2705282 x^{2} + 20949672 x + 11474513 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12984931501152231903148118403201067499769297367881220096=2^{42}\cdot 43^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(344=2^{3}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{344}(1,·)$, $\chi_{344}(213,·)$, $\chi_{344}(133,·)$, $\chi_{344}(193,·)$, $\chi_{344}(137,·)$, $\chi_{344}(269,·)$, $\chi_{344}(45,·)$, $\chi_{344}(145,·)$, $\chi_{344}(237,·)$, $\chi_{344}(21,·)$, $\chi_{344}(333,·)$, $\chi_{344}(217,·)$, $\chi_{344}(285,·)$, $\chi_{344}(161,·)$, $\chi_{344}(113,·)$, $\chi_{344}(293,·)$, $\chi_{344}(65,·)$, $\chi_{344}(97,·)$, $\chi_{344}(41,·)$, $\chi_{344}(257,·)$, $\chi_{344}(173,·)$, $\chi_{344}(125,·)$, $\chi_{344}(305,·)$, $\chi_{344}(309,·)$, $\chi_{344}(297,·)$, $\chi_{344}(121,·)$, $\chi_{344}(317,·)$, $\chi_{344}(85,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{79} a^{22} - \frac{7}{79} a^{21} - \frac{4}{79} a^{19} + \frac{12}{79} a^{18} - \frac{26}{79} a^{17} + \frac{27}{79} a^{16} + \frac{23}{79} a^{15} - \frac{2}{79} a^{14} + \frac{25}{79} a^{13} - \frac{26}{79} a^{12} - \frac{21}{79} a^{11} - \frac{9}{79} a^{10} - \frac{12}{79} a^{9} - \frac{29}{79} a^{8} - \frac{12}{79} a^{7} + \frac{3}{79} a^{6} + \frac{1}{79} a^{5} - \frac{23}{79} a^{4} - \frac{26}{79} a^{3} - \frac{20}{79} a^{2} + \frac{12}{79} a$, $\frac{1}{79} a^{23} + \frac{30}{79} a^{21} - \frac{4}{79} a^{20} - \frac{16}{79} a^{19} - \frac{21}{79} a^{18} + \frac{3}{79} a^{17} - \frac{25}{79} a^{16} + \frac{1}{79} a^{15} + \frac{11}{79} a^{14} - \frac{9}{79} a^{13} + \frac{34}{79} a^{12} + \frac{2}{79} a^{11} + \frac{4}{79} a^{10} - \frac{34}{79} a^{9} + \frac{22}{79} a^{8} - \frac{2}{79} a^{7} + \frac{22}{79} a^{6} - \frac{16}{79} a^{5} - \frac{29}{79} a^{4} + \frac{35}{79} a^{3} + \frac{30}{79} a^{2} + \frac{5}{79} a$, $\frac{1}{553} a^{24} + \frac{2}{553} a^{23} - \frac{2}{553} a^{22} - \frac{36}{553} a^{21} - \frac{103}{553} a^{20} + \frac{22}{79} a^{19} - \frac{186}{553} a^{18} + \frac{181}{553} a^{17} - \frac{44}{553} a^{16} - \frac{249}{553} a^{15} - \frac{239}{553} a^{14} + \frac{164}{553} a^{13} + \frac{16}{79} a^{12} + \frac{206}{553} a^{11} - \frac{54}{553} a^{10} + \frac{37}{79} a^{9} + \frac{37}{79} a^{8} + \frac{86}{553} a^{7} + \frac{90}{553} a^{6} + \frac{223}{553} a^{5} + \frac{2}{553} a^{4} - \frac{95}{553} a^{3} + \frac{73}{553} a^{2} + \frac{258}{553} a - \frac{3}{7}$, $\frac{1}{553} a^{25} + \frac{1}{553} a^{23} + \frac{3}{553} a^{22} - \frac{66}{553} a^{21} - \frac{221}{553} a^{20} - \frac{193}{553} a^{19} + \frac{39}{79} a^{18} - \frac{27}{79} a^{17} + \frac{8}{79} a^{16} - \frac{5}{79} a^{15} + \frac{96}{553} a^{14} + \frac{43}{553} a^{13} - \frac{137}{553} a^{12} - \frac{81}{553} a^{11} + \frac{80}{553} a^{10} + \frac{27}{79} a^{9} - \frac{187}{553} a^{8} + \frac{37}{553} a^{7} - \frac{251}{553} a^{6} + \frac{32}{553} a^{5} - \frac{1}{553} a^{4} + \frac{151}{553} a^{3} + \frac{25}{79} a^{2} + \frac{255}{553} a - \frac{1}{7}$, $\frac{1}{35685854565556697789} a^{26} - \frac{5397765606232999}{35685854565556697789} a^{25} - \frac{23551432453541178}{35685854565556697789} a^{24} + \frac{76582592718664670}{35685854565556697789} a^{23} + \frac{49407824492517578}{35685854565556697789} a^{22} - \frac{5113403783700852740}{35685854565556697789} a^{21} - \frac{9012483573040024438}{35685854565556697789} a^{20} - \frac{10017125306751952365}{35685854565556697789} a^{19} - \frac{15297037563647217617}{35685854565556697789} a^{18} + \frac{2365878917126591501}{35685854565556697789} a^{17} + \frac{5751167001255225049}{35685854565556697789} a^{16} + \frac{5746607569500485811}{35685854565556697789} a^{15} - \frac{11388178123702205038}{35685854565556697789} a^{14} + \frac{12084248424937286349}{35685854565556697789} a^{13} + \frac{7978721833373278056}{35685854565556697789} a^{12} + \frac{3453275778277399513}{35685854565556697789} a^{11} + \frac{4156139822531677}{15127534788281771} a^{10} + \frac{250025132693675102}{964482555825856697} a^{9} + \frac{11762748871987961404}{35685854565556697789} a^{8} - \frac{1605978039162743845}{5097979223650956827} a^{7} - \frac{13892188342745862706}{35685854565556697789} a^{6} + \frac{7519268356461043694}{35685854565556697789} a^{5} + \frac{296324362430622282}{5097979223650956827} a^{4} + \frac{15635071634281950763}{35685854565556697789} a^{3} + \frac{10410817530998934184}{35685854565556697789} a^{2} - \frac{14069184765946453151}{35685854565556697789} a - \frac{12864732471990}{191487782130149}$, $\frac{1}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{27} + \frac{118455504730714015068416605814638349328216746229535197828858248042434548}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{26} - \frac{2265907773604842662346019065546584026061176501238844940785140179818379474746816006585776}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{25} + \frac{2414316085187320129926151632051105891284933924734892606748495763725415663106106301567}{57250711854515832371463646149279529486260531373431796121746425977936389917152266491197909} a^{24} - \frac{32354824801175242967046501487918601989017846539336490132470690338323543656599296035115029}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{23} - \frac{353534663697636196600444283623013421397734255625653021853697516886509011679374898628412}{388376450688742538519929059012680051379767388506253535852928457309784699167708618629477707} a^{22} + \frac{6421744549982440752900576016255013574422350362833526752228709408707248415680310257945092808}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{21} + \frac{6821540231691067475925488982676879531730349612310253680778577990753307373193600421054810222}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{20} - \frac{1695815951768311114643761530693461638295103376753042077853272134300936104268942391691070475}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{19} - \frac{19140864753460205972466092548894509153355471273745663121068183286215210347403143147019969}{2052846953640496275033910740495594557293056196390197260936907560066004838457888412755810737} a^{18} + \frac{179265135683831433199764098649684666567956462920346739478007173417641140136369974293427378}{2052846953640496275033910740495594557293056196390197260936907560066004838457888412755810737} a^{17} + \frac{7059774213096135983549173903338876101371837593025017153896825717554594998625789861007868005}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{16} - \frac{4260827863000679085709086826013115863941856411605077524778428013534948744495586034575392535}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{15} + \frac{1130054769070077444519766221563175423681229589127882426939697873791819292010108289764223653}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{14} - \frac{2467584172475911247805554109458187910732041881533700919579485227712340952873444455111108074}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{13} + \frac{2888899035466226438773381620235322508326915400114836687867730194704240984586277892897290352}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{12} - \frac{3019647244725188422144954539313057125322133279947190176455256156787937198790971110482949446}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{11} + \frac{1424579509213464890434765282760695757752280420105509652752792260576843894577806262782868050}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{10} - \frac{80771559452524107605629613634059262228021018047992627200200232890262381762556324067941557}{2052846953640496275033910740495594557293056196390197260936907560066004838457888412755810737} a^{9} + \frac{5723388254397817986510045972909929223319543495638200530260181895038752536322043968603944738}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{8} - \frac{97856800481198195239100869093499622898754687387795494895642754010857579431381702748379705}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{7} + \frac{4585711334098803408906519597965299499607164005706043124609638933151658222752232982412217}{181897831335233847154903483335052682291789789553561782614662695195721947711458466953046521} a^{6} + \frac{3629666867226066235150720118997305282638157554821821889299989506363768509395262759368738689}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{5} - \frac{11694850246807596068456369911610095482739301165554805466621754090715905974069218230993547}{25985404476461978164986211905007526041684255650508826087808956456531706815922638136149503} a^{4} - \frac{6722248387106396194939475644331458578159753912526395282569318211966950153654795444395282931}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{3} - \frac{1904510658945148998251571212321518162108492879229447803500278910027846693927997841023514309}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a^{2} + \frac{3311851189558489483705044533481935624545352621530287190446976243227352405532894063492217909}{14369928675483473925237375183469161901051393374731380826558352920462033869205218889290675159} a - \frac{544174963901571848227298591228657147755815859468859106702235613851706231625645119582}{1252334515241167439980884172031454572499189584318862232023124024563136916504013624743}$
Class group and class number
$C_{985}$, which has order $985$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9818745262125.305 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 43 | Data not computed | ||||||