Normalized defining polynomial
\( x^{28} - 2 x^{27} + 33 x^{26} - 8 x^{25} + 400 x^{24} + 232 x^{23} + 3692 x^{22} - 84 x^{21} + 27349 x^{20} - 20814 x^{19} + 139895 x^{18} - 200258 x^{17} + 638481 x^{16} - 1214276 x^{15} + 3203837 x^{14} - 6552716 x^{13} + 15305413 x^{12} - 26733774 x^{11} + 44836479 x^{10} - 67452498 x^{9} + 82171671 x^{8} - 89019544 x^{7} + 107446012 x^{6} - 114631858 x^{5} + 99986627 x^{4} - 88401976 x^{3} + 75048342 x^{2} - 40938072 x + 9978409 \)
Invariants
| Degree: | $28$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 14]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12984931501152231903148118403201067499769297367881220096=2^{42}\cdot 43^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(344=2^{3}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{344}(1,·)$, $\chi_{344}(131,·)$, $\chi_{344}(211,·)$, $\chi_{344}(257,·)$, $\chi_{344}(137,·)$, $\chi_{344}(11,·)$, $\chi_{344}(145,·)$, $\chi_{344}(75,·)$, $\chi_{344}(259,·)$, $\chi_{344}(217,·)$, $\chi_{344}(299,·)$, $\chi_{344}(27,·)$, $\chi_{344}(323,·)$, $\chi_{344}(161,·)$, $\chi_{344}(35,·)$, $\chi_{344}(113,·)$, $\chi_{344}(65,·)$, $\chi_{344}(97,·)$, $\chi_{344}(41,·)$, $\chi_{344}(193,·)$, $\chi_{344}(171,·)$, $\chi_{344}(305,·)$, $\chi_{344}(51,·)$, $\chi_{344}(219,·)$, $\chi_{344}(297,·)$, $\chi_{344}(121,·)$, $\chi_{344}(59,·)$, $\chi_{344}(107,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{7} a^{21} - \frac{2}{7} a^{19} - \frac{2}{7} a^{18} + \frac{1}{7} a^{17} - \frac{2}{7} a^{16} + \frac{2}{7} a^{15} - \frac{3}{7} a^{14} - \frac{2}{7} a^{13} - \frac{3}{7} a^{10} + \frac{3}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{22} - \frac{2}{7} a^{20} - \frac{2}{7} a^{19} + \frac{1}{7} a^{18} - \frac{2}{7} a^{17} + \frac{2}{7} a^{16} - \frac{3}{7} a^{15} - \frac{2}{7} a^{14} - \frac{3}{7} a^{11} + \frac{3}{7} a^{9} - \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2}$, $\frac{1}{7} a^{23} - \frac{2}{7} a^{20} - \frac{3}{7} a^{19} + \frac{1}{7} a^{18} - \frac{3}{7} a^{17} + \frac{2}{7} a^{15} + \frac{1}{7} a^{14} + \frac{3}{7} a^{13} - \frac{3}{7} a^{12} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{2149} a^{24} + \frac{51}{2149} a^{23} + \frac{149}{2149} a^{22} + \frac{143}{2149} a^{21} - \frac{592}{2149} a^{20} + \frac{1038}{2149} a^{19} + \frac{810}{2149} a^{18} + \frac{828}{2149} a^{17} - \frac{816}{2149} a^{16} - \frac{523}{2149} a^{15} - \frac{110}{307} a^{14} + \frac{20}{307} a^{13} - \frac{916}{2149} a^{12} - \frac{289}{2149} a^{11} + \frac{1013}{2149} a^{10} + \frac{655}{2149} a^{9} - \frac{596}{2149} a^{8} + \frac{79}{2149} a^{7} + \frac{470}{2149} a^{6} - \frac{26}{2149} a^{5} + \frac{787}{2149} a^{4} - \frac{115}{2149} a^{3} - \frac{1053}{2149} a^{2} + \frac{1014}{2149} a + \frac{111}{307}$, $\frac{1}{539399} a^{25} + \frac{111}{539399} a^{24} - \frac{28719}{539399} a^{23} + \frac{16451}{539399} a^{22} + \frac{2720}{77057} a^{21} - \frac{77769}{539399} a^{20} - \frac{193869}{539399} a^{19} + \frac{24254}{539399} a^{18} - \frac{104022}{539399} a^{17} + \frac{104324}{539399} a^{16} - \frac{216350}{539399} a^{15} + \frac{54636}{539399} a^{14} + \frac{3876}{77057} a^{13} - \frac{109895}{539399} a^{12} - \frac{124391}{539399} a^{11} - \frac{267055}{539399} a^{10} + \frac{184836}{539399} a^{9} - \frac{115501}{539399} a^{8} + \frac{228092}{539399} a^{7} - \frac{178744}{539399} a^{6} - \frac{29407}{77057} a^{5} - \frac{242703}{539399} a^{4} + \frac{77393}{539399} a^{3} + \frac{63704}{539399} a^{2} + \frac{120254}{539399} a - \frac{10532}{77057}$, $\frac{1}{112356113433738723829} a^{26} - \frac{10359394090574}{112356113433738723829} a^{25} - \frac{9047342130086614}{112356113433738723829} a^{24} + \frac{5817373332292205616}{112356113433738723829} a^{23} + \frac{397413501679815900}{16050873347676960547} a^{22} - \frac{7141301278949907780}{112356113433738723829} a^{21} + \frac{5653053982027195853}{16050873347676960547} a^{20} - \frac{1273651828739535232}{16050873347676960547} a^{19} + \frac{4054140508274638270}{16050873347676960547} a^{18} - \frac{5642214986579008389}{112356113433738723829} a^{17} + \frac{33069829990652481162}{112356113433738723829} a^{16} - \frac{41027478842135372192}{112356113433738723829} a^{15} + \frac{4853731259232520915}{112356113433738723829} a^{14} - \frac{19101148580237065103}{112356113433738723829} a^{13} - \frac{8169524865759147417}{112356113433738723829} a^{12} + \frac{21149607137895429580}{112356113433738723829} a^{11} - \frac{55128853951174234765}{112356113433738723829} a^{10} + \frac{24594355621413152681}{112356113433738723829} a^{9} - \frac{7860092163288248990}{112356113433738723829} a^{8} + \frac{40156325040528028972}{112356113433738723829} a^{7} + \frac{52757076617737194965}{112356113433738723829} a^{6} - \frac{43049720927374221444}{112356113433738723829} a^{5} - \frac{56012159354501531099}{112356113433738723829} a^{4} + \frac{54779959282789104936}{112356113433738723829} a^{3} - \frac{54773339417418601804}{112356113433738723829} a^{2} - \frac{12610502410050600806}{112356113433738723829} a + \frac{6315539909365142127}{16050873347676960547}$, $\frac{1}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{27} + \frac{1849002133060682708125159040452806315068054452893451045955473202}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{26} - \frac{152936659338559829305422876793657458142611170119000259882549142350958926567512}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{25} - \frac{84047948448581132330359882975782975405341878587032417876971798763632948787646305}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{24} - \frac{13501347310322174607251794299082740704036095990171210564708722890891327145830196526}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{23} + \frac{4833717706252262297471023071227867738107057890584242815567984198244611371766710294}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{22} - \frac{4869149425370110009910448694920693324381788698514553461919091126627445721112442902}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{21} + \frac{143875974760404670456971626882912552857463699030938246947064455859443850106554961192}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{20} + \frac{17670390862742504425026054334485562385044024175054157467803016017997861909206697048}{64554779766601225069464937078703804373545218305604298353909640833471020438798351979} a^{19} - \frac{218674839670015111245936271985063964063840834040722532767929974875344761856685362166}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{18} + \frac{8098217644007054762800866950996242329217440774565630453441019112831349026445658972}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{17} + \frac{63721608721347448495143551171494505511415873157153033852633908040162368634335172581}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{16} + \frac{71589903191625227662008845434843237783203643624516368827056878032547646933193488775}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{15} + \frac{32593925665728238414684413303394927767355954707326787581685522216260178944637467977}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{14} + \frac{101639160862749700126041006651754159527395049375845638012044286472303868299538927880}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{13} - \frac{16756862006836497037542693822810514112814917032894538355399530680441814556489678455}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{12} - \frac{166012250270799693581081904615501611584358499518409796016133805116172320078211702723}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{11} + \frac{2389740456086119458167209387019069418156052480127929482397017762549678834344939126}{5720043776787450322610817209505400387529323141002912512371740327016419532551752707} a^{10} + \frac{1419133662893562225884691277109131911193988460943091217362199968147159994786603932}{64554779766601225069464937078703804373545218305604298353909640833471020438798351979} a^{9} + \frac{1791758797673543325313759203492810088664099557925593920625275718146247426486844170}{64554779766601225069464937078703804373545218305604298353909640833471020438798351979} a^{8} + \frac{19071554211811682717578076538463567466773134382870678014567069091832815623909912913}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{7} + \frac{153714359834389529594021208836669807685591031849973064044117360572027248053788244713}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{6} - \frac{156345173953036984147431493942444097927179499011619569868131410023406585905823645458}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{5} + \frac{179378669366755473454623231514397374358063462711420527576281220285582588787710215931}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{4} + \frac{160389759719195357819377599313872302661429242958210458053727159103193622576233430951}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{3} - \frac{208488772374403936132942175825700148564437291454635935444042314454954403043580838851}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a^{2} + \frac{149419883126462778662343165592748436412001727275635686359991664985414644576454775280}{451883458366208575486254559550926630614816528139230088477367485834297143071588463853} a + \frac{27064154613324125077172526337762033838214219210997527759205464110951679731219927952}{64554779766601225069464937078703804373545218305604298353909640833471020438798351979}$
Class group and class number
$C_{203}$, which has order $203$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40040306449331.87 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{4}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{4}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |