Normalized defining polynomial
\( x^{28} - 21 x^{26} + 1343 x^{24} - 59011 x^{22} + 2332758 x^{20} - 67729146 x^{18} + \cdots + 13\!\cdots\!41 \)
Invariants
| Degree: | $28$ |
| |
| Signature: | $[0, 14]$ |
| |
| Discriminant: |
\(116987765221280837299435954319702611299113180009478553600000000000000\)
\(\medspace = 2^{28}\cdot 5^{14}\cdot 7^{14}\cdot 29^{26}\)
|
| |
| Root discriminant: | \(269.78\) |
| |
| Galois root discriminant: | $2\cdot 5^{1/2}7^{1/2}29^{13/14}\approx 269.77705901914624$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2\times C_{14}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4060=2^{2}\cdot 5\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4060}(1,·)$, $\chi_{4060}(2379,·)$, $\chi_{4060}(2519,·)$, $\chi_{4060}(3009,·)$, $\chi_{4060}(3081,·)$, $\chi_{4060}(209,·)$, $\chi_{4060}(139,·)$, $\chi_{4060}(141,·)$, $\chi_{4060}(2449,·)$, $\chi_{4060}(2659,·)$, $\chi_{4060}(1749,·)$, $\chi_{4060}(1049,·)$, $\chi_{4060}(281,·)$, $\chi_{4060}(71,·)$, $\chi_{4060}(1821,·)$, $\chi_{4060}(3359,·)$, $\chi_{4060}(3431,·)$, $\chi_{4060}(1889,·)$, $\chi_{4060}(1891,·)$, $\chi_{4060}(1959,·)$, $\chi_{4060}(2731,·)$, $\chi_{4060}(2029,·)$, $\chi_{4060}(1399,·)$, $\chi_{4060}(3571,·)$, $\chi_{4060}(631,·)$, $\chi_{4060}(3641,·)$, $\chi_{4060}(3711,·)$, $\chi_{4060}(981,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{8192}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{41}a^{20}-\frac{9}{41}a^{16}+\frac{20}{41}a^{14}-\frac{13}{41}a^{12}-\frac{3}{41}a^{10}+\frac{1}{41}a^{8}-\frac{2}{41}a^{6}+\frac{2}{41}a^{4}+\frac{4}{41}a^{2}-\frac{10}{41}$, $\frac{1}{41}a^{21}-\frac{9}{41}a^{17}+\frac{20}{41}a^{15}-\frac{13}{41}a^{13}-\frac{3}{41}a^{11}+\frac{1}{41}a^{9}-\frac{2}{41}a^{7}+\frac{2}{41}a^{5}+\frac{4}{41}a^{3}-\frac{10}{41}a$, $\frac{1}{120581}a^{22}+\frac{686}{120581}a^{20}+\frac{35251}{120581}a^{18}+\frac{39356}{120581}a^{16}+\frac{24490}{120581}a^{14}+\frac{26216}{120581}a^{12}+\frac{14261}{120581}a^{10}-\frac{4031}{120581}a^{8}+\frac{47051}{120581}a^{6}+\frac{22737}{120581}a^{4}-\frac{1366}{120581}a^{2}-\frac{56388}{120581}$, $\frac{1}{120581}a^{23}+\frac{686}{120581}a^{21}+\frac{35251}{120581}a^{19}+\frac{39356}{120581}a^{17}+\frac{24490}{120581}a^{15}+\frac{26216}{120581}a^{13}+\frac{14261}{120581}a^{11}-\frac{4031}{120581}a^{9}+\frac{47051}{120581}a^{7}+\frac{22737}{120581}a^{5}-\frac{1366}{120581}a^{3}-\frac{56388}{120581}a$, $\frac{1}{106955347}a^{24}-\frac{384}{106955347}a^{22}+\frac{165885}{106955347}a^{20}+\frac{1389030}{106955347}a^{18}+\frac{42737892}{106955347}a^{16}-\frac{37583282}{106955347}a^{14}+\frac{1611996}{6291491}a^{12}+\frac{5607}{2608667}a^{10}-\frac{38787190}{106955347}a^{8}+\frac{14268409}{106955347}a^{6}-\frac{40446636}{106955347}a^{4}-\frac{34566139}{106955347}a^{2}-\frac{45379085}{106955347}$, $\frac{1}{106955347}a^{25}-\frac{384}{106955347}a^{23}+\frac{165885}{106955347}a^{21}+\frac{1389030}{106955347}a^{19}+\frac{42737892}{106955347}a^{17}-\frac{37583282}{106955347}a^{15}+\frac{1611996}{6291491}a^{13}+\frac{5607}{2608667}a^{11}-\frac{38787190}{106955347}a^{9}+\frac{14268409}{106955347}a^{7}-\frac{40446636}{106955347}a^{5}-\frac{34566139}{106955347}a^{3}-\frac{45379085}{106955347}a$, $\frac{1}{10\cdots 97}a^{26}+\frac{40\cdots 49}{10\cdots 97}a^{24}+\frac{77\cdots 02}{10\cdots 97}a^{22}+\frac{65\cdots 06}{10\cdots 97}a^{20}-\frac{52\cdots 92}{10\cdots 97}a^{18}+\frac{63\cdots 19}{64\cdots 41}a^{16}+\frac{48\cdots 90}{10\cdots 97}a^{14}-\frac{95\cdots 98}{10\cdots 97}a^{12}+\frac{17\cdots 94}{10\cdots 97}a^{10}-\frac{94\cdots 08}{10\cdots 97}a^{8}+\frac{24\cdots 45}{10\cdots 97}a^{6}-\frac{41\cdots 95}{10\cdots 97}a^{4}-\frac{30\cdots 19}{10\cdots 97}a^{2}+\frac{40\cdots 31}{10\cdots 97}$, $\frac{1}{12\cdots 87}a^{27}-\frac{26\cdots 85}{12\cdots 87}a^{25}-\frac{10\cdots 00}{12\cdots 87}a^{23}+\frac{66\cdots 97}{12\cdots 87}a^{21}+\frac{28\cdots 19}{12\cdots 87}a^{19}-\frac{51\cdots 44}{12\cdots 87}a^{17}-\frac{88\cdots 81}{12\cdots 87}a^{15}-\frac{59\cdots 49}{12\cdots 87}a^{13}+\frac{10\cdots 38}{12\cdots 87}a^{11}-\frac{58\cdots 34}{12\cdots 87}a^{9}+\frac{59\cdots 49}{12\cdots 87}a^{7}-\frac{17\cdots 74}{12\cdots 87}a^{5}+\frac{31\cdots 83}{12\cdots 87}a^{3}+\frac{25\cdots 46}{12\cdots 87}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
| |
| Relative class number: | data not computed |
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot R \cdot h}{2\cdot\sqrt{116987765221280837299435954319702611299113180009478553600000000000000}}\cr\mathstrut & \text{
Galois group
$C_2\times C_{14}$ (as 28T2):
| An abelian group of order 28 |
| The 28 conjugacy class representatives for $C_2\times C_{14}$ |
| Character table for $C_2\times C_{14}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.14.0.1}{14} }^{2}$ | R | R | ${\href{/padicField/11.14.0.1}{14} }^{2}$ | ${\href{/padicField/13.7.0.1}{7} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{14}$ | ${\href{/padicField/19.7.0.1}{7} }^{4}$ | ${\href{/padicField/23.14.0.1}{14} }^{2}$ | R | ${\href{/padicField/31.7.0.1}{7} }^{4}$ | ${\href{/padicField/37.14.0.1}{14} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{14}$ | ${\href{/padicField/43.7.0.1}{7} }^{4}$ | ${\href{/padicField/47.14.0.1}{14} }^{2}$ | ${\href{/padicField/53.14.0.1}{14} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.7.2.14a1.2 | $x^{14} + 2 x^{8} + 4 x^{7} + x^{2} + 4 x + 9$ | $2$ | $7$ | $14$ | $C_{14}$ | $$[2]^{7}$$ |
| 2.7.2.14a1.2 | $x^{14} + 2 x^{8} + 4 x^{7} + x^{2} + 4 x + 9$ | $2$ | $7$ | $14$ | $C_{14}$ | $$[2]^{7}$$ | |
|
\(5\)
| 5.7.2.7a1.1 | $x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
| 5.7.2.7a1.1 | $x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ | |
|
\(7\)
| Deg $28$ | $2$ | $14$ | $14$ | |||
|
\(29\)
| 29.1.14.13a1.1 | $x^{14} + 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $$[\ ]_{14}$$ |
| 29.1.14.13a1.1 | $x^{14} + 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $$[\ ]_{14}$$ |