Properties

Label 28.0.11505955528...8736.1
Degree $28$
Signature $[0, 14]$
Discriminant $2^{56}\cdot 43^{24}$
Root discriminant $100.50$
Ramified primes $2, 43$
Class number $8729$ (GRH)
Class group $[8729]$ (GRH)
Galois group $C_2\times C_{14}$ (as 28T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5764801, 0, 0, 0, 39023453, 0, 0, 0, 25926230, 0, 0, 0, 6451930, 0, 0, 0, 705923, 0, 0, 0, 31802, 0, 0, 0, 429, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^28 + 429*x^24 + 31802*x^20 + 705923*x^16 + 6451930*x^12 + 25926230*x^8 + 39023453*x^4 + 5764801)
 
gp: K = bnfinit(x^28 + 429*x^24 + 31802*x^20 + 705923*x^16 + 6451930*x^12 + 25926230*x^8 + 39023453*x^4 + 5764801, 1)
 

Normalized defining polynomial

\( x^{28} + 429 x^{24} + 31802 x^{20} + 705923 x^{16} + 6451930 x^{12} + 25926230 x^{8} + 39023453 x^{4} + 5764801 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $28$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 14]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(115059555281167207950880893411598858797306743145141108736=2^{56}\cdot 43^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $100.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(344=2^{3}\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{344}(1,·)$, $\chi_{344}(259,·)$, $\chi_{344}(133,·)$, $\chi_{344}(193,·)$, $\chi_{344}(11,·)$, $\chi_{344}(269,·)$, $\chi_{344}(207,·)$, $\chi_{344}(145,·)$, $\chi_{344}(107,·)$, $\chi_{344}(21,·)$, $\chi_{344}(279,·)$, $\chi_{344}(127,·)$, $\chi_{344}(219,·)$, $\chi_{344}(97,·)$, $\chi_{344}(35,·)$, $\chi_{344}(293,·)$, $\chi_{344}(231,·)$, $\chi_{344}(41,·)$, $\chi_{344}(299,·)$, $\chi_{344}(173,·)$, $\chi_{344}(47,·)$, $\chi_{344}(305,·)$, $\chi_{344}(183,·)$, $\chi_{344}(121,·)$, $\chi_{344}(87,·)$, $\chi_{344}(59,·)$, $\chi_{344}(317,·)$, $\chi_{344}(213,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} + \frac{1}{7} a$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{3}$, $\frac{1}{259} a^{16} + \frac{18}{37} a^{12} + \frac{15}{37} a^{8} - \frac{13}{259} a^{4} + \frac{1}{37}$, $\frac{1}{259} a^{17} + \frac{15}{259} a^{13} + \frac{15}{37} a^{9} - \frac{13}{259} a^{5} - \frac{104}{259} a$, $\frac{1}{1813} a^{18} + \frac{15}{1813} a^{14} - \frac{96}{259} a^{10} + \frac{505}{1813} a^{6} - \frac{622}{1813} a^{2}$, $\frac{1}{12691} a^{19} + \frac{792}{12691} a^{15} + \frac{681}{1813} a^{11} + \frac{4131}{12691} a^{7} - \frac{1658}{12691} a^{3}$, $\frac{1}{12691} a^{20} + \frac{8}{12691} a^{16} - \frac{20}{49} a^{12} - \frac{2043}{12691} a^{8} - \frac{4157}{12691} a^{4} - \frac{16}{37}$, $\frac{1}{12691} a^{21} + \frac{8}{12691} a^{17} + \frac{1}{49} a^{13} - \frac{2043}{12691} a^{9} - \frac{4157}{12691} a^{5} - \frac{1}{259} a$, $\frac{1}{12691} a^{22} + \frac{1}{12691} a^{18} + \frac{22}{1813} a^{14} + \frac{2661}{12691} a^{10} + \frac{4999}{12691} a^{6} + \frac{615}{1813} a^{2}$, $\frac{1}{12691} a^{23} - \frac{638}{12691} a^{15} - \frac{2106}{12691} a^{11} + \frac{124}{1813} a^{7} + \frac{5963}{12691} a^{3}$, $\frac{1}{17104636506372544633} a^{24} - \frac{640857574150393}{17104636506372544633} a^{20} + \frac{16503037258606480}{17104636506372544633} a^{16} - \frac{7197273607890289111}{17104636506372544633} a^{12} - \frac{8356086519836747410}{17104636506372544633} a^{8} + \frac{8248195887662146200}{17104636506372544633} a^{4} - \frac{2728072365356126}{7123963559505433}$, $\frac{1}{119732455544607812431} a^{25} - \frac{640857574150393}{119732455544607812431} a^{21} + \frac{16503037258606480}{119732455544607812431} a^{17} - \frac{7197273607890289111}{119732455544607812431} a^{13} - \frac{8356086519836747410}{119732455544607812431} a^{9} + \frac{42457468900407235466}{119732455544607812431} a^{5} - \frac{2728072365356126}{49867744916538031} a$, $\frac{1}{838127188812254687017} a^{26} - \frac{28944172256509816}{838127188812254687017} a^{22} - \frac{209923480200268904}{838127188812254687017} a^{18} - \frac{48737105123366468934}{838127188812254687017} a^{14} - \frac{309729781257599883514}{838127188812254687017} a^{10} + \frac{160114348034975356877}{838127188812254687017} a^{6} - \frac{23714516509570594}{49867744916538031} a^{2}$, $\frac{1}{5866890321685782809119} a^{27} - \frac{94985239848681803}{5866890321685782809119} a^{23} + \frac{186322925352763018}{5866890321685782809119} a^{19} + \frac{187491793653832728565}{5866890321685782809119} a^{15} + \frac{880132133550562806265}{5866890321685782809119} a^{11} + \frac{2577811791516799628960}{5866890321685782809119} a^{7} - \frac{304437556088194329}{2443519500910363519} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{8729}$, which has order $8729$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{41365516137009}{838127188812254687017} a^{27} - \frac{18293808923362121}{838127188812254687017} a^{23} - \frac{1546463035435128399}{838127188812254687017} a^{19} - \frac{44882858525823238397}{838127188812254687017} a^{15} - \frac{534364444835731415831}{838127188812254687017} a^{11} - \frac{2519906511884383877690}{838127188812254687017} a^{7} - \frac{10605018042069296065}{2443519500910363519} a^{3} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9818745262125.305 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{14}$ (as 28T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 28
The 28 conjugacy class representatives for $C_2\times C_{14}$
Character table for $C_2\times C_{14}$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), 7.7.6321363049.1, 14.14.83801419645740806624509952.1, 14.0.654698590982350051753984.1, 14.0.83801419645740806624509952.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}$ ${\href{/LocalNumberField/11.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/13.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{4}$ ${\href{/LocalNumberField/19.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/23.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/29.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/31.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{4}$ R ${\href{/LocalNumberField/47.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/53.14.0.1}{14} }^{2}$ ${\href{/LocalNumberField/59.14.0.1}{14} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$43$43.14.12.1$x^{14} + 3569 x^{7} + 4043763$$7$$2$$12$$C_{14}$$[\ ]_{7}^{2}$
43.14.12.1$x^{14} + 3569 x^{7} + 4043763$$7$$2$$12$$C_{14}$$[\ ]_{7}^{2}$