Normalized defining polynomial
\( x^{27} - 1647 x^{25} + 1205604 x^{23} - 516835737 x^{21} + 143927517195 x^{19} - 27296507852019 x^{17} + 3594473478418248 x^{15} - 328894323275269692 x^{13} + 20590515659785963086 x^{11} - 852854074550393903130 x^{9} + 22033735855443117779688 x^{7} - 320741086713893566770231 x^{5} + 2173911809949723063664899 x^{3} - 4371712760668124402754687 x - 1146875791564075382836381 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96679628704383224900411211844182831619287468040811424837360737394634888225089=3^{94}\cdot 61^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $710.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4941=3^{4}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4941}(1,·)$, $\chi_{4941}(3844,·)$, $\chi_{4941}(2182,·)$, $\chi_{4941}(4039,·)$, $\chi_{4941}(1099,·)$, $\chi_{4941}(1294,·)$, $\chi_{4941}(3280,·)$, $\chi_{4941}(2197,·)$, $\chi_{4941}(535,·)$, $\chi_{4941}(2392,·)$, $\chi_{4941}(196,·)$, $\chi_{4941}(4378,·)$, $\chi_{4941}(3295,·)$, $\chi_{4941}(1633,·)$, $\chi_{4941}(3490,·)$, $\chi_{4941}(550,·)$, $\chi_{4941}(4393,·)$, $\chi_{4941}(2731,·)$, $\chi_{4941}(4588,·)$, $\chi_{4941}(1648,·)$, $\chi_{4941}(1843,·)$, $\chi_{4941}(3829,·)$, $\chi_{4941}(745,·)$, $\chi_{4941}(2746,·)$, $\chi_{4941}(1084,·)$, $\chi_{4941}(2941,·)$, $\chi_{4941}(4927,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{61} a^{3}$, $\frac{1}{61} a^{4}$, $\frac{1}{61} a^{5}$, $\frac{1}{3721} a^{6}$, $\frac{1}{3721} a^{7}$, $\frac{1}{3721} a^{8}$, $\frac{1}{226981} a^{9}$, $\frac{1}{226981} a^{10}$, $\frac{1}{226981} a^{11}$, $\frac{1}{13845841} a^{12}$, $\frac{1}{13845841} a^{13}$, $\frac{1}{1540944060899879} a^{14} + \frac{49872332}{1540944060899879} a^{13} - \frac{14}{25261378047539} a^{12} + \frac{19417198}{25261378047539} a^{11} + \frac{77}{414120951599} a^{10} - \frac{23720683}{25261378047539} a^{9} - \frac{210}{6788868059} a^{8} - \frac{32104696}{414120951599} a^{7} + \frac{294}{111292919} a^{6} + \frac{357839}{6788868059} a^{5} - \frac{11956}{111292919} a^{4} + \frac{44732370}{6788868059} a^{3} + \frac{182329}{111292919} a^{2} - \frac{22289327}{111292919} a - \frac{453962}{111292919}$, $\frac{1}{93997587714892619} a^{15} - \frac{15}{1540944060899879} a^{13} + \frac{49872332}{1540944060899879} a^{12} + \frac{90}{25261378047539} a^{11} - \frac{42003389}{25261378047539} a^{10} - \frac{275}{414120951599} a^{9} + \frac{22075872}{414120951599} a^{8} + \frac{450}{6788868059} a^{7} + \frac{51145754}{414120951599} a^{6} - \frac{378}{111292919} a^{5} + \frac{21608930}{6788868059} a^{4} + \frac{8540}{111292919} a^{3} - \frac{7408776}{111292919} a^{2} - \frac{55815}{111292919} a - \frac{11990121}{111292919}$, $\frac{1}{93997587714892619} a^{16} + \frac{18906879}{1540944060899879} a^{13} - \frac{120}{25261378047539} a^{12} + \frac{26668743}{25261378047539} a^{11} + \frac{880}{414120951599} a^{10} - \frac{10818324}{25261378047539} a^{9} - \frac{2700}{6788868059} a^{8} + \frac{14746990}{414120951599} a^{7} + \frac{4032}{111292919} a^{6} + \frac{26976515}{6788868059} a^{5} - \frac{170800}{111292919} a^{4} - \frac{3535624}{6788868059} a^{3} + \frac{2679120}{111292919} a^{2} - \frac{12451269}{111292919} a - \frac{6809430}{111292919}$, $\frac{1}{93997587714892619} a^{17} - \frac{136}{25261378047539} a^{13} - \frac{33599051}{1540944060899879} a^{12} + \frac{1088}{414120951599} a^{11} - \frac{4679625}{25261378047539} a^{10} - \frac{3740}{6788868059} a^{9} + \frac{38475236}{414120951599} a^{8} + \frac{6528}{111292919} a^{7} + \frac{19829715}{414120951599} a^{6} - \frac{348432}{111292919} a^{5} + \frac{4457959}{6788868059} a^{4} + \frac{48738980}{6788868059} a^{3} + \frac{13373565}{111292919} a^{2} - \frac{54021478}{111292919} a - \frac{16601601}{111292919}$, $\frac{1}{5733852850608449759} a^{18} - \frac{48744615}{1540944060899879} a^{13} - \frac{816}{25261378047539} a^{12} - \frac{26718895}{25261378047539} a^{11} + \frac{6732}{414120951599} a^{10} + \frac{39956999}{25261378047539} a^{9} - \frac{22032}{6788868059} a^{8} + \frac{34717907}{414120951599} a^{7} + \frac{16233193}{414120951599} a^{6} - \frac{2346089}{6788868059} a^{5} + \frac{20202839}{6788868059} a^{4} - \frac{24134660}{6788868059} a^{3} + \frac{23911146}{111292919} a^{2} + \frac{4304243}{111292919} a + \frac{49554087}{111292919}$, $\frac{1}{5733852850608449759} a^{19} - \frac{969}{25261378047539} a^{13} + \frac{35191686}{1540944060899879} a^{12} + \frac{8721}{414120951599} a^{11} - \frac{47413648}{25261378047539} a^{10} - \frac{7693498}{25261378047539} a^{9} - \frac{30524653}{414120951599} a^{8} - \frac{6246898}{414120951599} a^{7} - \frac{24749836}{414120951599} a^{6} + \frac{27880792}{6788868059} a^{5} + \frac{45348170}{6788868059} a^{4} - \frac{55466229}{6788868059} a^{3} + \frac{42579995}{111292919} a^{2} + \frac{43260554}{111292919} a - \frac{54415698}{111292919}$, $\frac{1}{5733852850608449759} a^{20} + \frac{12025402}{1540944060899879} a^{13} - \frac{4845}{414120951599} a^{12} + \frac{31162206}{25261378047539} a^{11} + \frac{47355637}{25261378047539} a^{10} - \frac{7682095}{25261378047539} a^{9} + \frac{15617245}{414120951599} a^{8} - \frac{45663831}{414120951599} a^{7} + \frac{33857754}{414120951599} a^{6} + \frac{51199011}{6788868059} a^{5} + \frac{17046899}{6788868059} a^{4} + \frac{26131286}{6788868059} a^{3} + \frac{25132272}{111292919} a^{2} + \frac{42622700}{111292919} a - \frac{11646379}{111292919}$, $\frac{1}{349765023887115435299} a^{21} - \frac{5985}{25261378047539} a^{13} - \frac{378164}{25261378047539} a^{12} + \frac{57456}{414120951599} a^{11} - \frac{13844849}{25261378047539} a^{10} - \frac{37523017}{25261378047539} a^{9} - \frac{4135245}{414120951599} a^{8} - \frac{31002466}{414120951599} a^{7} - \frac{37976354}{414120951599} a^{6} + \frac{43786292}{6788868059} a^{5} - \frac{30736921}{6788868059} a^{4} - \frac{21957616}{6788868059} a^{3} + \frac{53645792}{111292919} a^{2} - \frac{19788352}{111292919} a + \frac{13534808}{111292919}$, $\frac{1}{349765023887115435299} a^{22} - \frac{15581103}{1540944060899879} a^{13} + \frac{13304105}{1540944060899879} a^{12} + \frac{118357}{25261378047539} a^{11} + \frac{7887443}{25261378047539} a^{10} + \frac{51981904}{25261378047539} a^{9} - \frac{33438718}{414120951599} a^{8} + \frac{55434809}{414120951599} a^{7} - \frac{36854745}{414120951599} a^{6} - \frac{46972512}{6788868059} a^{5} + \frac{39665691}{6788868059} a^{4} + \frac{39266051}{6788868059} a^{3} - \frac{7370949}{111292919} a^{2} + \frac{30238455}{111292919} a - \frac{19560379}{111292919}$, $\frac{1}{349765023887115435299} a^{23} - \frac{13915010}{1540944060899879} a^{13} - \frac{55184824}{1540944060899879} a^{12} + \frac{27857181}{25261378047539} a^{11} + \frac{5681993}{25261378047539} a^{10} - \frac{6148801}{25261378047539} a^{9} + \frac{9709146}{414120951599} a^{8} + \frac{1621082}{414120951599} a^{7} - \frac{51022218}{414120951599} a^{6} + \frac{13326046}{6788868059} a^{5} + \frac{55044998}{6788868059} a^{4} - \frac{35793933}{6788868059} a^{3} + \frac{54116948}{111292919} a^{2} + \frac{16714415}{111292919} a - \frac{7213041}{111292919}$, $\frac{1}{21335666457114041553239} a^{24} - \frac{44845737}{1540944060899879} a^{13} + \frac{55632879}{1540944060899879} a^{12} - \frac{12504678}{25261378047539} a^{11} + \frac{47825010}{25261378047539} a^{10} - \frac{43206264}{25261378047539} a^{9} + \frac{13453273}{414120951599} a^{8} + \frac{55006065}{414120951599} a^{7} + \frac{760508}{6788868059} a^{6} - \frac{14074163}{6788868059} a^{5} - \frac{570381}{111292919} a^{4} + \frac{10083283}{6788868059} a^{3} + \frac{39841680}{111292919} a^{2} + \frac{34842584}{111292919} a - \frac{53089750}{111292919}$, $\frac{1}{21335666457114041553239} a^{25} + \frac{8768414}{1540944060899879} a^{13} + \frac{2769813}{1540944060899879} a^{12} - \frac{175319}{414120951599} a^{11} + \frac{31017677}{25261378047539} a^{10} - \frac{28122694}{25261378047539} a^{9} - \frac{36129946}{414120951599} a^{8} - \frac{53379424}{414120951599} a^{7} - \frac{42445333}{414120951599} a^{6} - \frac{29687346}{6788868059} a^{5} - \frac{51699808}{6788868059} a^{4} - \frac{6892157}{6788868059} a^{3} + \frac{22465127}{111292919} a^{2} + \frac{8904835}{111292919} a - \frac{3251919}{111292919}$, $\frac{1}{21335666457114041553239} a^{26} + \frac{12002523}{1540944060899879} a^{13} + \frac{770418}{25261378047539} a^{12} + \frac{22285366}{25261378047539} a^{11} - \frac{34983222}{25261378047539} a^{10} + \frac{14256473}{25261378047539} a^{9} - \frac{24551355}{414120951599} a^{8} + \frac{20492317}{414120951599} a^{7} + \frac{802891}{414120951599} a^{6} - \frac{50931787}{6788868059} a^{5} + \frac{46606927}{6788868059} a^{4} - \frac{44213381}{6788868059} a^{3} - \frac{4469936}{111292919} a^{2} - \frac{7855036}{111292919} a + \frac{24215314}{111292919}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 61 | Data not computed | ||||||