Normalized defining polynomial
\( x^{27} - 1647 x^{25} + 1205604 x^{23} - 516835737 x^{21} + 143927517195 x^{19} - 27296507852019 x^{17} + 3594473478418248 x^{15} - 328894323275269692 x^{13} + 20590515659785963086 x^{11} - 852854074550393903130 x^{9} + 22033735855443117779688 x^{7} - 320741086713893566770231 x^{5} + 2173911809949723063664899 x^{3} - 4371712760668124402754687 x - 2525651376607972493539559 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96679628704383224900411211844182831619287468040811424837360737394634888225089=3^{94}\cdot 61^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $710.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4941=3^{4}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4941}(1,·)$, $\chi_{4941}(3844,·)$, $\chi_{4941}(2758,·)$, $\chi_{4941}(3463,·)$, $\chi_{4941}(1099,·)$, $\chi_{4941}(13,·)$, $\chi_{4941}(718,·)$, $\chi_{4941}(3856,·)$, $\chi_{4941}(4561,·)$, $\chi_{4941}(2197,·)$, $\chi_{4941}(1111,·)$, $\chi_{4941}(1816,·)$, $\chi_{4941}(3295,·)$, $\chi_{4941}(2209,·)$, $\chi_{4941}(2914,·)$, $\chi_{4941}(550,·)$, $\chi_{4941}(4393,·)$, $\chi_{4941}(3307,·)$, $\chi_{4941}(4012,·)$, $\chi_{4941}(1648,·)$, $\chi_{4941}(562,·)$, $\chi_{4941}(1267,·)$, $\chi_{4941}(4405,·)$, $\chi_{4941}(169,·)$, $\chi_{4941}(2746,·)$, $\chi_{4941}(1660,·)$, $\chi_{4941}(2365,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{61} a^{3}$, $\frac{1}{61} a^{4}$, $\frac{1}{61} a^{5}$, $\frac{1}{3721} a^{6}$, $\frac{1}{3721} a^{7}$, $\frac{1}{3721} a^{8}$, $\frac{1}{226981} a^{9}$, $\frac{1}{226981} a^{10}$, $\frac{1}{226981} a^{11}$, $\frac{1}{13845841} a^{12}$, $\frac{1}{13845841} a^{13}$, $\frac{1}{91522933581899} a^{14} + \frac{2962113}{91522933581899} a^{13} - \frac{14}{1500375960359} a^{12} + \frac{1153365}{1500375960359} a^{11} + \frac{77}{24596327219} a^{10} - \frac{1438958}{1500375960359} a^{9} - \frac{210}{403218479} a^{8} - \frac{1834612}{24596327219} a^{7} + \frac{294}{6610139} a^{6} - \frac{62999}{403218479} a^{5} - \frac{11956}{6610139} a^{4} - \frac{1383600}{403218479} a^{3} + \frac{182329}{6610139} a^{2} - \frac{1690954}{6610139} a - \frac{453962}{6610139}$, $\frac{1}{5582898948495839} a^{15} - \frac{15}{91522933581899} a^{13} + \frac{2962113}{91522933581899} a^{12} + \frac{90}{1500375960359} a^{11} - \frac{2494661}{1500375960359} a^{10} - \frac{275}{24596327219} a^{9} + \frac{1310766}{24596327219} a^{8} + \frac{450}{403218479} a^{7} + \frac{3089602}{24596327219} a^{6} - \frac{378}{6610139} a^{5} + \frac{1234835}{403218479} a^{4} + \frac{8540}{6610139} a^{3} - \frac{423372}{6610139} a^{2} - \frac{55815}{6610139} a - \frac{768619}{6610139}$, $\frac{1}{5582898948495839} a^{16} + \frac{1122835}{91522933581899} a^{13} - \frac{120}{1500375960359} a^{12} + \frac{1585536}{1500375960359} a^{11} + \frac{880}{24596327219} a^{10} - \frac{1118895}{1500375960359} a^{9} - \frac{2700}{403218479} a^{8} + \frac{2010978}{24596327219} a^{7} + \frac{1782794}{24596327219} a^{6} + \frac{289850}{403218479} a^{5} + \frac{2801478}{403218479} a^{4} - \frac{308719}{403218479} a^{3} + \frac{2679120}{6610139} a^{2} + \frac{307627}{6610139} a - \frac{199291}{6610139}$, $\frac{1}{5582898948495839} a^{17} - \frac{136}{1500375960359} a^{13} - \frac{2003454}{91522933581899} a^{12} + \frac{1088}{24596327219} a^{11} - \frac{183968}{1500375960359} a^{10} - \frac{696262}{1500375960359} a^{9} + \frac{1864864}{24596327219} a^{8} - \frac{2149868}{24596327219} a^{7} + \frac{1074374}{24596327219} a^{6} - \frac{1423935}{403218479} a^{5} - \frac{2458013}{403218479} a^{4} - \frac{1849769}{403218479} a^{3} - \frac{2460119}{6610139} a^{2} - \frac{1140366}{6610139} a - \frac{3226437}{6610139}$, $\frac{1}{340556835858246179} a^{18} - \frac{2896302}{91522933581899} a^{13} - \frac{816}{1500375960359} a^{12} - \frac{1571986}{1500375960359} a^{11} + \frac{6732}{24596327219} a^{10} - \frac{2139393}{1500375960359} a^{9} - \frac{22032}{403218479} a^{8} - \frac{471596}{24596327219} a^{7} + \frac{1933471}{24596327219} a^{6} + \frac{819416}{403218479} a^{5} + \frac{1451866}{403218479} a^{4} + \frac{1064312}{403218479} a^{3} - \frac{2529410}{6610139} a^{2} + \frac{2307495}{6610139} a - \frac{2247581}{6610139}$, $\frac{1}{340556835858246179} a^{19} - \frac{969}{1500375960359} a^{13} + \frac{2011017}{91522933581899} a^{12} + \frac{8721}{24596327219} a^{11} - \frac{17523}{14022205237} a^{10} - \frac{3915}{1500375960359} a^{9} + \frac{609991}{24596327219} a^{8} - \frac{1795647}{24596327219} a^{7} - \frac{1400292}{24596327219} a^{6} - \frac{3011015}{403218479} a^{5} - \frac{2136697}{403218479} a^{4} - \frac{1650792}{403218479} a^{3} - \frac{1849857}{6610139} a^{2} + \frac{2386801}{6610139} a - \frac{1520312}{6610139}$, $\frac{1}{340556835858246179} a^{20} + \frac{186502}{91522933581899} a^{13} + \frac{1802172}{91522933581899} a^{12} + \frac{2013317}{1500375960359} a^{11} + \frac{5220}{1500375960359} a^{10} + \frac{1448847}{1500375960359} a^{9} + \frac{1184048}{24596327219} a^{8} + \frac{2459434}{24596327219} a^{7} - \frac{1868694}{24596327219} a^{6} + \frac{2173808}{403218479} a^{5} + \frac{536322}{403218479} a^{4} - \frac{3041606}{403218479} a^{3} - \frac{1465047}{6610139} a^{2} - \frac{208479}{6610139} a - \frac{2685657}{6610139}$, $\frac{1}{20773966987353016919} a^{21} - \frac{5985}{1500375960359} a^{13} - \frac{32554}{1500375960359} a^{12} - \frac{3105323}{1500375960359} a^{11} - \frac{141358}{1500375960359} a^{10} + \frac{3083786}{1500375960359} a^{9} + \frac{520171}{24596327219} a^{8} + \frac{156291}{24596327219} a^{7} + \frac{2177274}{24596327219} a^{6} - \frac{1672187}{403218479} a^{5} + \frac{1501029}{403218479} a^{4} + \frac{228775}{403218479} a^{3} - \frac{38961}{6610139} a^{2} - \frac{2917673}{6610139} a - \frac{181306}{6610139}$, $\frac{1}{20773966987353016919} a^{22} + \frac{2298411}{91522933581899} a^{13} + \frac{1163271}{91522933581899} a^{12} - \frac{2954911}{1500375960359} a^{11} - \frac{748109}{1500375960359} a^{10} - \frac{2504669}{1500375960359} a^{9} - \frac{3214286}{24596327219} a^{8} - \frac{1590293}{24596327219} a^{7} - \frac{562051}{24596327219} a^{6} - \frac{1815305}{403218479} a^{5} + \frac{905974}{403218479} a^{4} - \frac{380519}{403218479} a^{3} - \frac{1434438}{6610139} a^{2} - \frac{1410769}{6610139} a + \frac{1298377}{6610139}$, $\frac{1}{20773966987353016919} a^{23} + \frac{384712}{91522933581899} a^{13} - \frac{2144107}{91522933581899} a^{12} + \frac{2763019}{1500375960359} a^{11} + \frac{2825990}{1500375960359} a^{10} + \frac{2181202}{1500375960359} a^{9} - \frac{504489}{24596327219} a^{8} - \frac{1760426}{24596327219} a^{7} - \frac{2513041}{24596327219} a^{6} - \frac{3204371}{403218479} a^{5} + \frac{2387347}{403218479} a^{4} + \frac{1509040}{403218479} a^{3} + \frac{1202334}{6610139} a^{2} - \frac{1974247}{6610139} a + \frac{643649}{6610139}$, $\frac{1}{1267211986228534032059} a^{24} - \frac{2509356}{91522933581899} a^{13} + \frac{1538848}{91522933581899} a^{12} - \frac{1056406}{1500375960359} a^{11} + \frac{2488362}{1500375960359} a^{10} - \frac{1287798}{1500375960359} a^{9} - \frac{944992}{24596327219} a^{8} - \frac{1455489}{24596327219} a^{7} - \frac{1644263}{24596327219} a^{6} - \frac{441994}{403218479} a^{5} + \frac{2885732}{403218479} a^{4} - \frac{648523}{403218479} a^{3} - \frac{2589783}{6610139} a^{2} + \frac{2720866}{6610139} a + \frac{836517}{6610139}$, $\frac{1}{1267211986228534032059} a^{25} + \frac{2024800}{91522933581899} a^{13} + \frac{355636}{91522933581899} a^{12} + \frac{2781125}{1500375960359} a^{11} - \frac{720503}{1500375960359} a^{10} - \frac{1514169}{1500375960359} a^{9} - \frac{1199892}{24596327219} a^{8} + \frac{1133805}{24596327219} a^{7} - \frac{1196617}{24596327219} a^{6} - \frac{2558727}{403218479} a^{5} + \frac{2005216}{403218479} a^{4} - \frac{1835972}{403218479} a^{3} - \frac{2900173}{6610139} a^{2} + \frac{2138329}{6610139} a - \frac{574046}{6610139}$, $\frac{1}{1267211986228534032059} a^{26} - \frac{2865670}{91522933581899} a^{13} + \frac{1717932}{91522933581899} a^{12} + \frac{1495641}{1500375960359} a^{11} - \frac{9748}{1500375960359} a^{10} - \frac{2171625}{1500375960359} a^{9} + \frac{636369}{24596327219} a^{8} + \frac{1536736}{24596327219} a^{7} + \frac{1415106}{24596327219} a^{6} - \frac{82006}{403218479} a^{5} - \frac{1072050}{403218479} a^{4} - \frac{877919}{403218479} a^{3} - \frac{1357721}{6610139} a^{2} + \frac{2607602}{6610139} a + \frac{2768816}{6610139}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 61 | Data not computed | ||||||