Normalized defining polynomial
\( x^{27} - x^{26} - 52 x^{25} + 47 x^{24} + 1128 x^{23} - 914 x^{22} - 13369 x^{21} + 9612 x^{20} + 95357 x^{19} - 60102 x^{18} - 425693 x^{17} + 231576 x^{16} + 1201391 x^{15} - 553157 x^{14} - 2121177 x^{13} + 810403 x^{12} + 2271851 x^{11} - 706862 x^{10} - 1399735 x^{9} + 342875 x^{8} + 461618 x^{7} - 78149 x^{6} - 74294 x^{5} + 4948 x^{4} + 4861 x^{3} + 271 x^{2} - 34 x - 1 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93991579198394673195940551085616659931617170424829641=109^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(109\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{109}(1,·)$, $\chi_{109}(66,·)$, $\chi_{109}(3,·)$, $\chi_{109}(5,·)$, $\chi_{109}(7,·)$, $\chi_{109}(9,·)$, $\chi_{109}(75,·)$, $\chi_{109}(78,·)$, $\chi_{109}(15,·)$, $\chi_{109}(16,·)$, $\chi_{109}(81,·)$, $\chi_{109}(21,·)$, $\chi_{109}(22,·)$, $\chi_{109}(89,·)$, $\chi_{109}(25,·)$, $\chi_{109}(26,·)$, $\chi_{109}(27,·)$, $\chi_{109}(80,·)$, $\chi_{109}(35,·)$, $\chi_{109}(38,·)$, $\chi_{109}(97,·)$, $\chi_{109}(105,·)$, $\chi_{109}(45,·)$, $\chi_{109}(48,·)$, $\chi_{109}(49,·)$, $\chi_{109}(73,·)$, $\chi_{109}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{1123} a^{25} - \frac{34}{1123} a^{24} - \frac{442}{1123} a^{23} - \frac{216}{1123} a^{22} + \frac{514}{1123} a^{21} - \frac{109}{1123} a^{20} + \frac{283}{1123} a^{19} - \frac{131}{1123} a^{17} + \frac{371}{1123} a^{16} + \frac{458}{1123} a^{15} + \frac{271}{1123} a^{14} + \frac{217}{1123} a^{13} + \frac{202}{1123} a^{12} + \frac{54}{1123} a^{11} + \frac{93}{1123} a^{10} - \frac{470}{1123} a^{9} + \frac{175}{1123} a^{8} + \frac{267}{1123} a^{7} - \frac{162}{1123} a^{6} + \frac{372}{1123} a^{5} - \frac{455}{1123} a^{4} + \frac{399}{1123} a^{3} + \frac{326}{1123} a^{2} - \frac{519}{1123} a - \frac{485}{1123}$, $\frac{1}{38652025412215529314156951896530659073754985185677} a^{26} + \frac{7991820473358747625315273651387437262759229759}{38652025412215529314156951896530659073754985185677} a^{25} - \frac{5708654903781952966464696042478353027023479401775}{38652025412215529314156951896530659073754985185677} a^{24} - \frac{6186162281376923819715251090418470911910670210614}{38652025412215529314156951896530659073754985185677} a^{23} - \frac{12331912655244367618773764117871076690368317768979}{38652025412215529314156951896530659073754985185677} a^{22} - \frac{8936341473516665454352196413952403830083091750364}{38652025412215529314156951896530659073754985185677} a^{21} + \frac{15909583813273576205872374925441305547140334566048}{38652025412215529314156951896530659073754985185677} a^{20} - \frac{17124005522461010163166944449743236478851565131480}{38652025412215529314156951896530659073754985185677} a^{19} + \frac{1131243861880206622487224895748177119175431808507}{38652025412215529314156951896530659073754985185677} a^{18} + \frac{10131547728768713481593382213399429739843929575823}{38652025412215529314156951896530659073754985185677} a^{17} + \frac{15879872474710352589162011574401397002815852814420}{38652025412215529314156951896530659073754985185677} a^{16} - \frac{3419397289927642984606887966506756305904157241746}{38652025412215529314156951896530659073754985185677} a^{15} + \frac{7037614405128318262367167130071473911098952123333}{38652025412215529314156951896530659073754985185677} a^{14} + \frac{10813767970620400974639557399893721703234218600009}{38652025412215529314156951896530659073754985185677} a^{13} + \frac{18953064522385387700662742818921448718978909545762}{38652025412215529314156951896530659073754985185677} a^{12} - \frac{11601011163587359431900189699253017882181987437844}{38652025412215529314156951896530659073754985185677} a^{11} - \frac{4710553884336296256326384521486051964869216439896}{38652025412215529314156951896530659073754985185677} a^{10} - \frac{19165859196367498761124773927239874127297181311085}{38652025412215529314156951896530659073754985185677} a^{9} - \frac{16202373375016903866451445930276334458761116000900}{38652025412215529314156951896530659073754985185677} a^{8} - \frac{5865401031874208170021050225532510091646552586161}{38652025412215529314156951896530659073754985185677} a^{7} + \frac{15079756736058852639143887769929590418394852626071}{38652025412215529314156951896530659073754985185677} a^{6} + \frac{17096352634286255689097295666631034101339614755825}{38652025412215529314156951896530659073754985185677} a^{5} - \frac{19174887351527986774219457277635871403212823929290}{38652025412215529314156951896530659073754985185677} a^{4} - \frac{13604717269736156948755389097026605481882589706489}{38652025412215529314156951896530659073754985185677} a^{3} - \frac{16002487590744990129746618463002626536040244750707}{38652025412215529314156951896530659073754985185677} a^{2} + \frac{15156754393213303651162277391201253649836080967595}{38652025412215529314156951896530659073754985185677} a - \frac{892345826767498889908404178579862884658507885090}{38652025412215529314156951896530659073754985185677}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 457712909681794240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| 3.3.11881.1, 9.9.19925626416901921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 109 | Data not computed | ||||||