Properties

Label 27.27.9399157919...9641.1
Degree $27$
Signature $[27, 0]$
Discriminant $109^{26}$
Root discriminant $91.61$
Ramified prime $109$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{27}$ (as 27T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -34, 271, 4861, 4948, -74294, -78149, 461618, 342875, -1399735, -706862, 2271851, 810403, -2121177, -553157, 1201391, 231576, -425693, -60102, 95357, 9612, -13369, -914, 1128, 47, -52, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^27 - x^26 - 52*x^25 + 47*x^24 + 1128*x^23 - 914*x^22 - 13369*x^21 + 9612*x^20 + 95357*x^19 - 60102*x^18 - 425693*x^17 + 231576*x^16 + 1201391*x^15 - 553157*x^14 - 2121177*x^13 + 810403*x^12 + 2271851*x^11 - 706862*x^10 - 1399735*x^9 + 342875*x^8 + 461618*x^7 - 78149*x^6 - 74294*x^5 + 4948*x^4 + 4861*x^3 + 271*x^2 - 34*x - 1)
 
gp: K = bnfinit(x^27 - x^26 - 52*x^25 + 47*x^24 + 1128*x^23 - 914*x^22 - 13369*x^21 + 9612*x^20 + 95357*x^19 - 60102*x^18 - 425693*x^17 + 231576*x^16 + 1201391*x^15 - 553157*x^14 - 2121177*x^13 + 810403*x^12 + 2271851*x^11 - 706862*x^10 - 1399735*x^9 + 342875*x^8 + 461618*x^7 - 78149*x^6 - 74294*x^5 + 4948*x^4 + 4861*x^3 + 271*x^2 - 34*x - 1, 1)
 

Normalized defining polynomial

\( x^{27} - x^{26} - 52 x^{25} + 47 x^{24} + 1128 x^{23} - 914 x^{22} - 13369 x^{21} + 9612 x^{20} + 95357 x^{19} - 60102 x^{18} - 425693 x^{17} + 231576 x^{16} + 1201391 x^{15} - 553157 x^{14} - 2121177 x^{13} + 810403 x^{12} + 2271851 x^{11} - 706862 x^{10} - 1399735 x^{9} + 342875 x^{8} + 461618 x^{7} - 78149 x^{6} - 74294 x^{5} + 4948 x^{4} + 4861 x^{3} + 271 x^{2} - 34 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $27$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[27, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(93991579198394673195940551085616659931617170424829641=109^{26}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $91.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $109$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(109\)
Dirichlet character group:    $\lbrace$$\chi_{109}(1,·)$, $\chi_{109}(66,·)$, $\chi_{109}(3,·)$, $\chi_{109}(5,·)$, $\chi_{109}(7,·)$, $\chi_{109}(9,·)$, $\chi_{109}(75,·)$, $\chi_{109}(78,·)$, $\chi_{109}(15,·)$, $\chi_{109}(16,·)$, $\chi_{109}(81,·)$, $\chi_{109}(21,·)$, $\chi_{109}(22,·)$, $\chi_{109}(89,·)$, $\chi_{109}(25,·)$, $\chi_{109}(26,·)$, $\chi_{109}(27,·)$, $\chi_{109}(80,·)$, $\chi_{109}(35,·)$, $\chi_{109}(38,·)$, $\chi_{109}(97,·)$, $\chi_{109}(105,·)$, $\chi_{109}(45,·)$, $\chi_{109}(48,·)$, $\chi_{109}(49,·)$, $\chi_{109}(73,·)$, $\chi_{109}(63,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{1123} a^{25} - \frac{34}{1123} a^{24} - \frac{442}{1123} a^{23} - \frac{216}{1123} a^{22} + \frac{514}{1123} a^{21} - \frac{109}{1123} a^{20} + \frac{283}{1123} a^{19} - \frac{131}{1123} a^{17} + \frac{371}{1123} a^{16} + \frac{458}{1123} a^{15} + \frac{271}{1123} a^{14} + \frac{217}{1123} a^{13} + \frac{202}{1123} a^{12} + \frac{54}{1123} a^{11} + \frac{93}{1123} a^{10} - \frac{470}{1123} a^{9} + \frac{175}{1123} a^{8} + \frac{267}{1123} a^{7} - \frac{162}{1123} a^{6} + \frac{372}{1123} a^{5} - \frac{455}{1123} a^{4} + \frac{399}{1123} a^{3} + \frac{326}{1123} a^{2} - \frac{519}{1123} a - \frac{485}{1123}$, $\frac{1}{38652025412215529314156951896530659073754985185677} a^{26} + \frac{7991820473358747625315273651387437262759229759}{38652025412215529314156951896530659073754985185677} a^{25} - \frac{5708654903781952966464696042478353027023479401775}{38652025412215529314156951896530659073754985185677} a^{24} - \frac{6186162281376923819715251090418470911910670210614}{38652025412215529314156951896530659073754985185677} a^{23} - \frac{12331912655244367618773764117871076690368317768979}{38652025412215529314156951896530659073754985185677} a^{22} - \frac{8936341473516665454352196413952403830083091750364}{38652025412215529314156951896530659073754985185677} a^{21} + \frac{15909583813273576205872374925441305547140334566048}{38652025412215529314156951896530659073754985185677} a^{20} - \frac{17124005522461010163166944449743236478851565131480}{38652025412215529314156951896530659073754985185677} a^{19} + \frac{1131243861880206622487224895748177119175431808507}{38652025412215529314156951896530659073754985185677} a^{18} + \frac{10131547728768713481593382213399429739843929575823}{38652025412215529314156951896530659073754985185677} a^{17} + \frac{15879872474710352589162011574401397002815852814420}{38652025412215529314156951896530659073754985185677} a^{16} - \frac{3419397289927642984606887966506756305904157241746}{38652025412215529314156951896530659073754985185677} a^{15} + \frac{7037614405128318262367167130071473911098952123333}{38652025412215529314156951896530659073754985185677} a^{14} + \frac{10813767970620400974639557399893721703234218600009}{38652025412215529314156951896530659073754985185677} a^{13} + \frac{18953064522385387700662742818921448718978909545762}{38652025412215529314156951896530659073754985185677} a^{12} - \frac{11601011163587359431900189699253017882181987437844}{38652025412215529314156951896530659073754985185677} a^{11} - \frac{4710553884336296256326384521486051964869216439896}{38652025412215529314156951896530659073754985185677} a^{10} - \frac{19165859196367498761124773927239874127297181311085}{38652025412215529314156951896530659073754985185677} a^{9} - \frac{16202373375016903866451445930276334458761116000900}{38652025412215529314156951896530659073754985185677} a^{8} - \frac{5865401031874208170021050225532510091646552586161}{38652025412215529314156951896530659073754985185677} a^{7} + \frac{15079756736058852639143887769929590418394852626071}{38652025412215529314156951896530659073754985185677} a^{6} + \frac{17096352634286255689097295666631034101339614755825}{38652025412215529314156951896530659073754985185677} a^{5} - \frac{19174887351527986774219457277635871403212823929290}{38652025412215529314156951896530659073754985185677} a^{4} - \frac{13604717269736156948755389097026605481882589706489}{38652025412215529314156951896530659073754985185677} a^{3} - \frac{16002487590744990129746618463002626536040244750707}{38652025412215529314156951896530659073754985185677} a^{2} + \frac{15156754393213303651162277391201253649836080967595}{38652025412215529314156951896530659073754985185677} a - \frac{892345826767498889908404178579862884658507885090}{38652025412215529314156951896530659073754985185677}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $26$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 457712909681794240 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{27}$ (as 27T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 27
The 27 conjugacy class representatives for $C_{27}$
Character table for $C_{27}$ is not computed

Intermediate fields

3.3.11881.1, 9.9.19925626416901921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ $27$ $27$ $27$ $27$ $27$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ $27$ $27$ $27$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ $27$ $27$ $27$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
109Data not computed