Properties

Label 27.27.8274036950...3609.1
Degree $27$
Signature $[27, 0]$
Discriminant $19^{24}\cdot 37^{18}$
Root discriminant $152.10$
Ramified primes $19, 37$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_3\times C_9$ (as 27T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-28067027, -602443376, -2622725154, -246741993, 18121240371, 31218812642, -6523878607, -61123319381, -47377292870, 11963110633, 29933674810, 6583428950, -7213234613, -3325690822, 787530733, 656954365, -21588434, -73206350, -3919676, 5090845, 474063, -229513, -23664, 6703, 588, -119, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 6*x^26 - 119*x^25 + 588*x^24 + 6703*x^23 - 23664*x^22 - 229513*x^21 + 474063*x^20 + 5090845*x^19 - 3919676*x^18 - 73206350*x^17 - 21588434*x^16 + 656954365*x^15 + 787530733*x^14 - 3325690822*x^13 - 7213234613*x^12 + 6583428950*x^11 + 29933674810*x^10 + 11963110633*x^9 - 47377292870*x^8 - 61123319381*x^7 - 6523878607*x^6 + 31218812642*x^5 + 18121240371*x^4 - 246741993*x^3 - 2622725154*x^2 - 602443376*x - 28067027)
 
gp: K = bnfinit(x^27 - 6*x^26 - 119*x^25 + 588*x^24 + 6703*x^23 - 23664*x^22 - 229513*x^21 + 474063*x^20 + 5090845*x^19 - 3919676*x^18 - 73206350*x^17 - 21588434*x^16 + 656954365*x^15 + 787530733*x^14 - 3325690822*x^13 - 7213234613*x^12 + 6583428950*x^11 + 29933674810*x^10 + 11963110633*x^9 - 47377292870*x^8 - 61123319381*x^7 - 6523878607*x^6 + 31218812642*x^5 + 18121240371*x^4 - 246741993*x^3 - 2622725154*x^2 - 602443376*x - 28067027, 1)
 

Normalized defining polynomial

\( x^{27} - 6 x^{26} - 119 x^{25} + 588 x^{24} + 6703 x^{23} - 23664 x^{22} - 229513 x^{21} + 474063 x^{20} + 5090845 x^{19} - 3919676 x^{18} - 73206350 x^{17} - 21588434 x^{16} + 656954365 x^{15} + 787530733 x^{14} - 3325690822 x^{13} - 7213234613 x^{12} + 6583428950 x^{11} + 29933674810 x^{10} + 11963110633 x^{9} - 47377292870 x^{8} - 61123319381 x^{7} - 6523878607 x^{6} + 31218812642 x^{5} + 18121240371 x^{4} - 246741993 x^{3} - 2622725154 x^{2} - 602443376 x - 28067027 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $27$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[27, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(82740369509121494587249825446059868376844092109571921823609=19^{24}\cdot 37^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $152.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(703=19\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{703}(1,·)$, $\chi_{703}(195,·)$, $\chi_{703}(581,·)$, $\chi_{703}(454,·)$, $\chi_{703}(519,·)$, $\chi_{703}(137,·)$, $\chi_{703}(396,·)$, $\chi_{703}(334,·)$, $\chi_{703}(655,·)$, $\chi_{703}(593,·)$, $\chi_{703}(149,·)$, $\chi_{703}(343,·)$, $\chi_{703}(408,·)$, $\chi_{703}(100,·)$, $\chi_{703}(26,·)$, $\chi_{703}(158,·)$, $\chi_{703}(482,·)$, $\chi_{703}(676,·)$, $\chi_{703}(359,·)$, $\chi_{703}(232,·)$, $\chi_{703}(491,·)$, $\chi_{703}(556,·)$, $\chi_{703}(47,·)$, $\chi_{703}(112,·)$, $\chi_{703}(248,·)$, $\chi_{703}(121,·)$, $\chi_{703}(63,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{191} a^{25} + \frac{72}{191} a^{24} - \frac{63}{191} a^{23} + \frac{83}{191} a^{22} - \frac{16}{191} a^{21} + \frac{85}{191} a^{20} - \frac{32}{191} a^{19} - \frac{78}{191} a^{18} + \frac{58}{191} a^{17} + \frac{76}{191} a^{16} + \frac{65}{191} a^{15} - \frac{50}{191} a^{14} + \frac{16}{191} a^{13} - \frac{79}{191} a^{12} + \frac{28}{191} a^{11} - \frac{24}{191} a^{10} - \frac{92}{191} a^{9} - \frac{78}{191} a^{8} + \frac{66}{191} a^{7} - \frac{46}{191} a^{6} - \frac{84}{191} a^{4} - \frac{87}{191} a^{3} - \frac{49}{191} a^{2} - \frac{65}{191} a - \frac{89}{191}$, $\frac{1}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{26} - \frac{3373750906768454240901935077594746292177699920808526758990825937498399065593367728702185227880302319915319391020}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{25} + \frac{448594004725605023607308570419577576893420466076555355798553639509270026061497786452330822796685722200982689708808}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{24} - \frac{759563557591690956690612699650060145953993249952027041898403959701699493112462180961528582330996821845528309111590}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{23} - \frac{850955941147913074342802530188017488123559419338636798602916952743110014831859773894428572928382350302436322594971}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{22} - \frac{452156306785894630081040457232283854865045710467550716631200949688940311863669795412508613336309092781053640498466}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{21} + \frac{307055396561062341588866376869905011347924640626726992712737883353991613181810443465742382631195258525484540296211}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{20} - \frac{710123501776445659352067264969904756518826984440887994612285067987723851616192460277881075468608281070233954251923}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{19} - \frac{630911654015114923846963904821642652220156359853555601023919605899548813144749504077414244716065206281908702749898}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{18} + \frac{15594701823471462502781864088996159821288863926945666777048914591567838453187538260298156576457657917219953681383}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{17} + \frac{626907728694877524563238677534802969253154505409758943470387328017029360632378360914001967397922741812317369279094}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{16} + \frac{160776251658152768766734234782081694949008438391987732087800513634388177560137354779799349376692116385281159089395}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{15} - \frac{236674381345268027256000014441814292676540349654690072123194689408821436622139859810850427810004286279846495480062}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{14} + \frac{682622526139572906394355315056034649845798899620111686912255342422972549492522874716370652920235396660948933920440}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{13} + \frac{482855762179249544371782670765790016894549500638500851444082104185048895577910201168509806017756328988895167936765}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{12} + \frac{433496568303621779291573678558970956672511735470777427601574895156723576800950576365517519771165473454520361627987}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{11} - \frac{357209502101491639817572859516957051647953787451982514092311773416657195417586130319070708902334789979418339919050}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{10} + \frac{220524792333951833026548220901145466792570163646130081607752384097824945002439425892631692586467746861143401628651}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{9} + \frac{117439942528846621508088790323000418845010300544548004385887598444217381129098837347873286647394156680974944015337}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{8} + \frac{710730889252711502423215814470960689147945549380676296451478784635716113291846261484152797494909923074554822576053}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{7} + \frac{83365801816800538521288394711894989049967951895035437413113170461069934915995751353385506396963032215324879417363}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{6} - \frac{544603795208597475816679373383664198844615188448820696870741783388516252179283365307432395981225524413524807968180}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{5} - \frac{661917913883382140596350441874714653043269253732372029534151621414058845126792334347540735937676602926419862460916}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{4} - \frac{105260395205875461527270564199717770025842301865873316224384884550091787402046596916594301775837073148850348156896}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{3} - \frac{426116294073709845695461391522359967371712674343395974948327492135584008582673017257258149715412805044033495477147}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a^{2} + \frac{642646452079570383802440900638983111787867943655236597293969653792319872867134774244082095246094227864001071552427}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831} a + \frac{199127527238226241301452478110147481370993785998606547933391123059809046971481399786175375452134599266473004538661}{1850970836601195828012047344435085839618546612394672758160875414450660827861621042140109313173609137774146452937831}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $26$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 149277476389860470000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_9$ (as 27T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 27
The 27 conjugacy class representatives for $C_3\times C_9$
Character table for $C_3\times C_9$ is not computed

Intermediate fields

3.3.494209.2, 3.3.361.1, 3.3.1369.1, 3.3.494209.1, 9.9.120706859316371329.1, 9.9.43575176213210049769.2, \(\Q(\zeta_{19})^+\), 9.9.43575176213210049769.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{9}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ R ${\href{/LocalNumberField/23.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{9}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{3}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
$37$37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$