Normalized defining polynomial
\( x^{27} - 351 x^{25} + 54756 x^{23} - 5002569 x^{21} + 296891595 x^{19} - 11999818467 x^{17} + 336756810312 x^{15} - 6566757801084 x^{13} + 87614373819726 x^{11} - 773386139272890 x^{9} + 4258173096231912 x^{7} - 13210014264446727 x^{5} + 19081131715311939 x^{3} - 8177627877990831 x - 920226642090821 \)
Invariants
| Degree: | $27$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[27, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79502042287804104995388608594472718525612115183651404436672117601=3^{94}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $253.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1053=3^{4}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1053}(256,·)$, $\chi_{1053}(1,·)$, $\chi_{1053}(835,·)$, $\chi_{1053}(133,·)$, $\chi_{1053}(841,·)$, $\chi_{1053}(586,·)$, $\chi_{1053}(139,·)$, $\chi_{1053}(718,·)$, $\chi_{1053}(16,·)$, $\chi_{1053}(724,·)$, $\chi_{1053}(469,·)$, $\chi_{1053}(22,·)$, $\chi_{1053}(601,·)$, $\chi_{1053}(607,·)$, $\chi_{1053}(352,·)$, $\chi_{1053}(484,·)$, $\chi_{1053}(937,·)$, $\chi_{1053}(490,·)$, $\chi_{1053}(235,·)$, $\chi_{1053}(367,·)$, $\chi_{1053}(820,·)$, $\chi_{1053}(373,·)$, $\chi_{1053}(118,·)$, $\chi_{1053}(952,·)$, $\chi_{1053}(250,·)$, $\chi_{1053}(958,·)$, $\chi_{1053}(703,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{13} a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{169} a^{6}$, $\frac{1}{169} a^{7}$, $\frac{1}{169} a^{8}$, $\frac{1}{2197} a^{9}$, $\frac{1}{2197} a^{10}$, $\frac{1}{2197} a^{11}$, $\frac{1}{28561} a^{12}$, $\frac{1}{28561} a^{13}$, $\frac{1}{3079989679} a^{14} - \frac{28801}{3079989679} a^{13} - \frac{14}{236922283} a^{12} + \frac{50896}{236922283} a^{11} + \frac{77}{18224791} a^{10} + \frac{34769}{236922283} a^{9} - \frac{210}{1401907} a^{8} - \frac{40310}{18224791} a^{7} + \frac{294}{107839} a^{6} + \frac{11082}{1401907} a^{5} - \frac{2548}{107839} a^{4} + \frac{35806}{1401907} a^{3} + \frac{8281}{107839} a^{2} + \frac{25696}{107839} a - \frac{4394}{107839}$, $\frac{1}{40039865827} a^{15} - \frac{15}{3079989679} a^{13} - \frac{28801}{3079989679} a^{12} + \frac{90}{236922283} a^{11} + \frac{22095}{236922283} a^{10} - \frac{275}{18224791} a^{9} - \frac{45508}{18224791} a^{8} + \frac{450}{1401907} a^{7} - \frac{15115}{18224791} a^{6} - \frac{378}{107839} a^{5} + \frac{47870}{1401907} a^{4} + \frac{1820}{107839} a^{3} - \frac{1007}{107839} a^{2} - \frac{2535}{107839} a - \frac{29228}{107839}$, $\frac{1}{40039865827} a^{16} - \frac{29460}{3079989679} a^{13} - \frac{120}{236922283} a^{12} + \frac{30662}{236922283} a^{11} + \frac{880}{18224791} a^{10} + \frac{37770}{236922283} a^{9} - \frac{2700}{1401907} a^{8} + \frac{27269}{18224791} a^{7} + \frac{34374}{18224791} a^{6} - \frac{1578}{1401907} a^{5} - \frac{41844}{1401907} a^{4} - \frac{15196}{1401907} a^{3} + \frac{13841}{107839} a^{2} + \frac{32695}{107839} a + \frac{41929}{107839}$, $\frac{1}{40039865827} a^{17} - \frac{136}{236922283} a^{13} - \frac{2520}{3079989679} a^{12} + \frac{1088}{18224791} a^{11} - \frac{20656}{236922283} a^{10} + \frac{14974}{236922283} a^{9} + \frac{49363}{18224791} a^{8} + \frac{24842}{18224791} a^{7} + \frac{30299}{18224791} a^{6} + \frac{5223}{1401907} a^{5} - \frac{13125}{1401907} a^{4} + \frac{35756}{1401907} a^{3} - \frac{48702}{107839} a^{2} + \frac{16309}{107839} a - \frac{40440}{107839}$, $\frac{1}{520518255751} a^{18} + \frac{1142}{236922283} a^{13} - \frac{816}{236922283} a^{12} + \frac{43457}{236922283} a^{11} - \frac{20323}{236922283} a^{10} + \frac{33031}{236922283} a^{9} + \frac{37101}{18224791} a^{8} + \frac{28255}{18224791} a^{7} - \frac{31338}{18224791} a^{6} + \frac{999}{107839} a^{5} - \frac{39238}{1401907} a^{4} - \frac{31841}{1401907} a^{3} + \frac{7604}{107839} a^{2} + \frac{7516}{107839} a + \frac{49450}{107839}$, $\frac{1}{520518255751} a^{19} - \frac{969}{236922283} a^{13} + \frac{31743}{3079989679} a^{12} + \frac{5534}{236922283} a^{11} - \frac{4144}{18224791} a^{10} - \frac{12163}{236922283} a^{9} + \frac{10371}{18224791} a^{8} + \frac{947}{1401907} a^{7} + \frac{41396}{18224791} a^{6} - \frac{296}{1401907} a^{5} - \frac{18777}{1401907} a^{4} - \frac{46432}{1401907} a^{3} + \frac{4250}{107839} a^{2} - \frac{6823}{107839} a - \frac{9271}{107839}$, $\frac{1}{520518255751} a^{20} - \frac{4058}{3079989679} a^{13} + \frac{43907}{3079989679} a^{12} - \frac{19815}{236922283} a^{11} - \frac{19729}{236922283} a^{10} - \frac{29941}{236922283} a^{9} + \frac{23142}{18224791} a^{8} - \frac{37662}{18224791} a^{7} - \frac{6862}{18224791} a^{6} + \frac{37511}{1401907} a^{5} + \frac{27470}{1401907} a^{4} + \frac{12895}{1401907} a^{3} + \frac{28621}{107839} a^{2} - \frac{49437}{107839} a - \frac{29811}{107839}$, $\frac{1}{6766737324763} a^{21} + \frac{30034}{3079989679} a^{13} + \frac{31212}{3079989679} a^{12} - \frac{7945}{236922283} a^{11} + \frac{44713}{236922283} a^{10} + \frac{9566}{236922283} a^{9} - \frac{1327}{1401907} a^{8} + \frac{17123}{18224791} a^{7} + \frac{18371}{18224791} a^{6} + \frac{10554}{1401907} a^{5} - \frac{11134}{1401907} a^{4} - \frac{26245}{1401907} a^{3} + \frac{42779}{107839} a^{2} - \frac{44227}{107839} a + \frac{30303}{107839}$, $\frac{1}{6766737324763} a^{22} - \frac{44012}{3079989679} a^{13} - \frac{29047}{3079989679} a^{12} + \frac{52074}{236922283} a^{11} + \frac{32613}{236922283} a^{10} + \frac{52145}{236922283} a^{9} + \frac{52303}{18224791} a^{8} - \frac{19542}{18224791} a^{7} + \frac{36121}{18224791} a^{6} + \frac{51071}{1401907} a^{5} + \frac{5196}{1401907} a^{4} - \frac{9964}{1401907} a^{3} + \frac{28792}{107839} a^{2} - \frac{27477}{107839} a - \frac{25540}{107839}$, $\frac{1}{6766737324763} a^{23} + \frac{28786}{3079989679} a^{13} - \frac{170}{3079989679} a^{12} + \frac{35657}{236922283} a^{11} + \frac{2006}{236922283} a^{10} + \frac{50723}{236922283} a^{9} - \frac{39656}{18224791} a^{8} - \frac{2170}{1401907} a^{7} + \frac{37879}{18224791} a^{6} - \frac{9617}{1401907} a^{5} + \frac{11989}{1401907} a^{4} - \frac{14695}{1401907} a^{3} + \frac{47914}{107839} a^{2} - \frac{781}{107839} a - \frac{33401}{107839}$, $\frac{1}{87967585221919} a^{24} - \frac{33244}{3079989679} a^{13} + \frac{7305}{3079989679} a^{12} - \frac{7495}{236922283} a^{11} - \frac{1743}{18224791} a^{10} + \frac{26193}{236922283} a^{9} + \frac{3906}{18224791} a^{8} + \frac{29032}{18224791} a^{7} - \frac{33929}{18224791} a^{6} - \frac{41992}{1401907} a^{5} - \frac{1513}{1401907} a^{4} - \frac{50580}{1401907} a^{3} - \frac{28998}{107839} a^{2} + \frac{4391}{107839} a + \frac{24158}{107839}$, $\frac{1}{87967585221919} a^{25} + \frac{49342}{3079989679} a^{13} - \frac{1020}{3079989679} a^{12} - \frac{29945}{236922283} a^{11} - \frac{18814}{236922283} a^{10} - \frac{14827}{236922283} a^{9} - \frac{2653}{1401907} a^{8} + \frac{15684}{18224791} a^{7} - \frac{15280}{18224791} a^{6} + \frac{30471}{1401907} a^{5} + \frac{27032}{1401907} a^{4} - \frac{45675}{1401907} a^{3} - \frac{15012}{107839} a^{2} - \frac{38576}{107839} a + \frac{47709}{107839}$, $\frac{1}{87967585221919} a^{26} - \frac{340}{236922283} a^{13} - \frac{36161}{3079989679} a^{12} + \frac{25386}{236922283} a^{11} - \frac{15907}{236922283} a^{10} + \frac{21652}{236922283} a^{9} + \frac{28433}{18224791} a^{8} - \frac{21776}{18224791} a^{7} - \frac{30019}{18224791} a^{6} - \frac{37282}{1401907} a^{5} - \frac{49151}{1401907} a^{4} + \frac{7207}{1401907} a^{3} - \frac{37707}{107839} a^{2} + \frac{18800}{107839} a + \frac{52358}{107839}$
Class group and class number
Not computed
Unit group
| Rank: | $26$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 27 |
| The 27 conjugacy class representatives for $C_{27}$ |
| Character table for $C_{27}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $27$ | R | $27$ | $27$ | $27$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{3}$ | $27$ | $27$ | $27$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{9}$ | $27$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||